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Spring school on Combinatorics is a traditional meeting organized for members
of the Combinatorial Seminar at Charles University for nearly 30 years. By now
it is well known internationally and it is regularly visited by our cooperating in-
stitutions in the DIMATIA and COMBSTRU networks. In the years 1999-2001,
and again in 2004-2006, the school is supported by ERASMUS-SOCRATES
Intensive Programme 503334-1C-1-2002-1-CZ-ERASMUS-IPUC-1 which in-
cludes participation of universities from Bonn, Berlin, Bordeaux, Barcelona,
Pisa and recently Bergen.

The Spring Schools are organized by our undegraduate students and while the
lectures are selected by senior people of KAM and ITT and other participating
institutions, the lectures themselves are given by students (both graduate an
undergraduate) only. This leads to unique atmosphere of the meeting which
helps the students in further studies and their orientation.

This year the Spring School was organized in Borova Lada, a mountain village
in Sumava with a great variety of possibilities for hiking a biking. Some of it is
mirrored by photos in this volume.

We thank Eva Ondrackovd and Tomdas Valla as the main organizers who also
edited this volume. We also thank Martin Loebl, Pavel Valtr and other col-
leagues who took part both in the organization and in the Spring School itself.
We hope to meet all this year’s participants in 2006 again!

Jan Kratochvil, Jaroslav Nesettil
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Petr Skovron

xofon@kam.mff.cuni.cz

Presented paper by A. V. Kostochka and V. Rédl

On graphs with small Ramsey number
(J. Graph Theory 37 (2001) 198-204)

Let R(G) denote the minimum integer N such that for every bicoloring of the
edges of Ky, at least one of the monochromatic subgraphs contains G as a
subgraph. We show that for every positive integer d and each ~, 0 < v < 1,
there exists k = k(d,~) such that for every bipartite graph G = (W, U; E) with
the maximum degree of vertices in W at most d and |U| < |W|7, we have
R(G) < k|W|.

Josef Cibulka

josef.cibulka@seznam.cz

Presented paper by P.Balister, B.Bollobas, O.Riordan and R.H.Shelp

Graphs with large maximum degree
containing no odd cycles of a given length

(http://www.sciencedirect.com/)

There are many results showing that every graph with enough edges, or sat-
isfying some natural degree conditions, contains long cycles of certain lengths.
Here we added the condition that the graph has at least one vertex of large
degree.

Let us write f(n, A, Cagy1) for the maximal number of edges in a graph on n
vertices with maximum degree A that contains no cycles of length 2k+1. For
% < A <n—k—1 and n sufficiently large we show that f(n,A,Cory1) =
A(n — A) and that the complete bipartite graph Ka ,—a is the only one with
that many edges. The upper bound holds for smaller A as well, but in that
case the obvious bound % is better.

The article also contains a proof that for every graph |[E(G)| <3 > Ig(v)

veEV(Q)

where lg(v) means the length of a longest path starting in v. This is an im-
provement of an old result of Erdos and Gallai.
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Christian Sloper

sloper@ii.uib.no

Fixed Parameter Complexity and Set Splitting

Basic Fixed Parameter Complexity Design

It is commonly believed that there is no polynomial time algorithm for NP-
complete problems and that a combinatorial explosion in the running time
is inevitable. Parameterized complexity is one of many recent inventions to
combat this intractability of NP-complete problems. It is based on the idea
that for many problems the ‘natural’ instances are not uniformly distributed
among all possible instances. In many cases we can single out a parameter,
that for most real-life applications is kept small. This can be the size of the
output, the treewidth of the inputgraph or other information about the input
or the output.

What we want to do in parameterized complexity is to design algorithms where
the combinatorial explosion is limited to the parameter. That is, we wish to
obtain an algorithm with a running time of the type f(k)n®®") where f(k) is
an arbitrary (often exponential) function. The idea is then that if k is fixed,
the running time will be polynomial. If £ then increases much slower than n
we will have an ’almost’ polynomial algorithm for the problem and we might
be able to solve instances of considerable size. If such an algorithm exists
we say that the problem is Fixed Parameter Tractable or in the class FPT.
However, not all problems fall into this class. While it has been known for some
time that we can obtain a 2k kernel for Vertex Cover [1], for Dominating Set
we now of nothing substantially better than an n®®*) algorithm trying every
possible subset of size k. We substantiate the belief that there is no FPT-
algorithm for Dominating Set and other problems by a completeness-hierarchy
FPT CW[1] CW[2] C... C W[P] which is similar to P C NP. It is possible
to show that Dominating Set is W[2]-complete and it is thus highly unlikely
that it will have a FPT-algorithm.

We will now proceed to demonstrate a few positive techniques for designing
algorithms in Fixed Parameter Complexity. Throughout this first part we will
focus on the well known problem Vertex Cover.

VERTEX COVER

INSTANCE: Graph G = (V, E)

PARAMETER: A positive integer k

QuEesTioN: 35S C V, |S| < k s.t. every edge e € E is incident to a vertex
sCS?

The first method we will demonstrate is Bounded Search Tree. In bounded
search tree we show how to limit the growth of the search tree. For Vertex Cover
this is based on the simple observation that for every edge one of the endpoints
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must be selected. If we remove any of these vertices we are left with a smaller
instance of vertex cover. So we have an obvious recursive algorithm that checks
one edge, tries both possibilities to cover the edge and solves the two remaining
subproblems. Since the number of vertices in a vertex cover is limited by & the
depth of the recursion is also limited. To calculate the size of the recursion tree
we get the following recursive equation T'(k) = 2xT'(k — 1),7(0) = 1. Which
solves to T'(k) = 2*, and at each step algorithm does linear work, so we have
our first algorithm for vertex cover with running time O(2%n).

An important method of obtaining FPT-algorithms is reduction to problem
kernel. Here we attempt to reduce the graph in size such that the remainder
(the kernel) has less than g(k) vertices, where g(k) is a function only dependent
on k. Note that given such a kernel we can trivially construct a FPT-algorithm
by testing every possible solution.

To reduce a graph G we commonly define a set of reduction rules. A reduction
rule can be executed in polynomial time and identifies a subgraph of G that
either is redundant, which can be safely deleted, or necessary, which must be in
a solution. In either case the instance can be reduced in size. We will now give
an easy example of how to obtain a O(k?) kernel for the Vertex Cover problem.
We will base the argument on the observation that in any vertex cover C either
v € C or N(v) € C. Since we can select at most k vertices we must select every
vertex of degree greater than k. From this we get a reduction rule stating.

Reduction rule. v € V(G),deg(v) > k has a k-vertex cover <= G' =
G[V —v] has a k — 1 vertex cover.

We can now iterate this reduction rule until we get a reduced instance G' with
no vertex of size k or more. We can now argue that the size of G’ is at most
O(k?) as follows. Since maximum degree in in G' is k, any vertex in G can at
most cover k edges. Thus G’ cannot have more than k2 edges, and the result
follows.

Set Splitting

The second part of this abstract will discuss the problem Set Splitting.

k-SET SPLITTING

INSTANCE: A tuple (X, F, k) where F is a collection of subsets of a finite
set X, and a positive integer k.

PARAMETER: k

QUESTION: Is there a subfamily 7' C F,|F'| > k, and a partition of X
into disjoint subsets Xy and X; such that for every S € F',S N Xq # 0 and
SNX; #0.

To improve the running time we show that any non-trivial solution of SET
SPLITTING has a SET COVER of size at most k, we can then reduce the problem
to 2% instances of Max Sat with k clauses each.

Let a set cover be a subset S C X such that for every set P € F,PNS # 0.
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We base this on a proof that an instance either has a set cover of size k or it
has a k-Set Splitting.

Lemma 1. Any instance (X, F,k) of Set Splitting that has a minimal set
cover S, has a partitioning of X into disjoint subsets Xo and X; such that at
least | S| sets are split.

Theorem. Set Splitting can be solved in time O*(2.6494%)

Proof. We obtain a minimal set cover S by greedily selecting vertices to cover
all sets, by Lemma 1 we know that S has size less than k, otherwise we can
immediately answer ‘Yes’. Let P = {P | P € F,P ¢ S}. It is clear that
|P| < k, otherwise the partition S, X \ S splits at least k sets. The remaining
sets are only affected by how we partition S.

Observe that if S was already partitioned into disjoint subsets X, X every set
in P has at least one member in X or in Xj.

Assume we have a partitioning X§, X] of S. For each set R € P, where R is
not split by X} and X{, create a clause Cr. If R contains an element in X
add literals x; for each element z; € R — S to Cg, if R contains an element in
X then add literals z;, for each element z; € R — S to Cg.

Adding an element z to X§ now corresponds to setting variable z false, and
vice versa. Observe that a set R € P is split iff its clause Cg is satisfied. We
can now employ Chen and Kanj’s exact algorithm for MAX SAT. There are
2k different partitions of the set cover S, for each we construct an instance
of MAX SAT with at most k clauses. Thus we get a total running time of
O* (2% % 1.3247%) = 0*(2.6494%). ¢

References

[1] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and
Further Improvements. Journal of Algorithms Volume 41, 280-301 (2001).

Ondiej Suchy
ondra@s.cz
Presented paper by Peter J. Cameron and C. Y. Ku
Intersecting families of permutations
(http://dx.doi.org/10.1016/S0195-6698(03) 00078-7)

Let S,, be the symmetric group on the set X = {1,2,...,n}. A subset S of S,
is intersecting if for any two permutations g and h in S, g(z) = h(z) for some
z € X (that is g and h agree on z). Deza and Frankl (J. Combin. Theory Ser.
A 22 (1977) 352) proved that if S C S, is intersecting then |S| < (n —1)!. This

8



bound is met by taking S to be a coset of a stabiliser of a point. We show that
these are the only largest intersecting sets of permutations.

Definition. We say that S C S, is a coset of stabiliser of a point, iff there
exist z,y € X, such that S = {g|g € S, A g(z) = y}.

Main theorem. Letn > 2 and S C S, be an intersecting set of permutations
such that |S| = (n — 1)!. Then S is a coset of a stabiliser of one point.

Alexandr Kazda

alexandr.kazda@seznam.cz
Presented paper by M. Cho, D. Kim, S. Seo, H. Shin

Colored Priifer codes for k-edge colored trees
(The Electronic Journal of Combinatorics 11/2004, #N10)

The main goal of the article is to provide a bijective proof of the formula
k(n —2) ("Ef__;)) for the number of k-edge colored trees on n vertices. These
trees on n (labelled) vertices have their edges colored by k colors so that any
two edges sharing a vertex have different colors. Denote by Cj, 1 the set of all

such trees (on the vertex set {1,2,...,n}).

The main idea of this proof is to count a different set én,k of colored trees using
slightly modified Priifer codes. Let r be a root edge of a tree T' on n vertices.
It is convinient to chose r as the first edge on the path from vertex 1 to vertex
2.* Call h the parent edge of e if it is hNe # @ and h has lower distance from
r than e. The coloring f of T must satisfy the following conditions:

o f(r)e{1,2,...,k}
o fle)e{l,2,....,k—1}fore #r.
o If e, e’ have a common parent edge then f(e) # f(e').
These trees can be encoded (by an one-to-one mapping) to the set P, ;, of arrays

of the form:

a ay ... Qp_2 1

C1 C2 ce.. Cp—2 Cp
where a; € {1,...,n},¢; € {1,2,...,k — 1}, the pairs (a;,¢;) are distinct for
i€ {1,2,....,n—2} and ¢,—1 € {1,2,...,k}. Obviously, there are exactly
k(n — 2)!("5:“__21)) elements in P, j.
Encoding: Begin with the tree 7" and ¢ = 1. In each step, cut off the leaf b
in T with the largest number. Let a; be the number of b’s neighbor and ¢; be

The authors of the article have chosen r to be the edge connecting 1 with its
minimal neighbor, which causes problems during encoding and decoding that
were not adressed in the article.



the color of {a;,b}. The last edge to be pruned is the root edge and thus the
algorimthm produces an array from P, .

Decoding: Start with V' = {1}, E = () and then for ¢ from n — 2 to 1 attach
a leaf b to the vertex a;y1. There are two possible choices of b: If it is a; € V
then let b = a;, else put b = min{z € {1,2,...,n} : z ¢ V}. Color the edge
{b,a;i+1} by the color ¢;+1. Finally, add the last remaining vertex b not in V' to
the vertex a;. Color the new edge ¢;.

A bijection between the set 5’n,k and Cp, i, is then used to finish the proof. This
bijection works as follows:

Cn,k — Cn,k

Let us have a tree T' with the root edge 7. Let f be a coloring of T' by k colors.
We will produce a new coloring g of T so that (T, g) € Cy x by “compressing”
the colors of non-root edges. We put g(r) = f(r) and then in each step define
the color of the uncolored edge e with minimal distance from r. Let h be
the parent edge of e. Then g(e) = f(e) — 1 if f(e) > g(h) or g(e) = f(e) if
f(e) < g(h).

Cn,k — Cn,k

The “decompression” works in a similar way: We set f(r) = g(r) and then
proceed with defining f for the yet uncolored edge e with minimal distance
from e. Let again h be a parent of e. Then it is eighter f(e) = g(e) + 1 if

g(e) = f(h) or f(e) = g(e) if g(e) < f(h).
We have now obtained bijection between P, ; and 5nk and a bijection be-
tween Cj,  and Cj, ;. By composing them we get a bijection between P, ; and
Chk, meaning that there are indeed k(n — 2)!("(75“__21)) k-edge colored trees on
n vertices.
References
[1] J.H van Lint, R. M. Wilson. A Course in Combinatorics. Cambridge
University Press, 1992.

[2] R.P. Stanley. Enumerative Combinatorics vol.2. Cambridge University
Press, 1999.

Milan Tuharsky

tuharsky@science.upjs.sk

Theory of light graphs

The participant has not submitted any abstract.
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Ondiej Rucky

ondrej.rucky@seznam.cz

Excentric graphs

The talk is based mostly on the last article of the series about eccentric di-
graphs: Joan Gimbert, Nacho Lpez, Mirka Miller, Joseph Ryan: Characteri-
zation of eccentric digraphs, but there are also four preceding articles dealing
with this topic: Fred Buckley: The FEccentric Digraph of a Graph, where the
notion of eccentric digraph for graphs is introduced and eccentric digraphs of
trees are studied; James Boland, Mirka Miller: The Eccentric Digraph of a
Digraph, which just enhances the notion also for digraphs and states some ba-
sic problems; James Boland, Fred Buckley, Mirka Miller: Eccentric Digraphs,
a slight extension of the previous article; and Mirka Miller, Joan Gimbert,
Frank Ruskey, Joseph Ryan: Iterations of eccentric digraphs, where iterations
of eccentric digraphs are considered.

Two main objectives of the talk are: to state and prove a complete charac-
terization of eccentric digraphs and, second, to characterize (di)graphs whose
eccentric digraphs are graphs (i.e. symmetric digraphs).

The eccentric digraphs describe naturally the relation of the greatest distance
between every two vertices in a given (di)graph G: the eccentricity of a ver-
tex u in G is the distance from u to the most remote vertex of it: e(u) :=
max{dist(u,v) : v € V(G)}; then, this most distant vertex is an eccentric ver-
tex of u (there can be more than one of them, of course); eccentric digraph
of a digraph G (denoted by ED(G)) describes this relation of being eccentric:
ED(G) := (V(GQ),{(u,v) : v is eccentric vertex of u in G}); and finally a given
digraph G is eccentric if 3 digraph H : ED(H) = G.

Directly from its definition, eccentric digraphs must have some properties, for
example, they cannot have a vertex with out-degree zero, hence cannot be
acyclic. But it is proved much more: following two theorems give a complete
characterization of eccentric digraphs (the second is restriction of the first for
the undirected case):

Theorem 1. A digraph G is eccentric if and only if ED(G~) = G.

Theorem 2. Let G be a graph of order n > 1. Then G is eccentric if and
only if G is self-centered with radius 2 or G is the union of complete graphs.
Where G~ (a reduction of G) is derived from the original by deleting all outgoing
arcs from vertices with out-degree n — 1 (where n is the order of G), radius is
the minimum eccentricity in a (di)graph (rad(G) := min{e(v) : v € V(G)})
and a (di)graph is self-centered if the eccentricity of all its vertices is the same.
These theorems have two corollaries determining the eccentric character of some
classes of graphs:
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Corollary 3.
(i) Every non-connected graph with minimum degree > 0 is eccentric.

(i) The eccentric graphs of radius 1 are the complete multipartite graphs with
at least one partite set of cardinality 1.

(i#3) Every connected graph with radius > 3 or diameter > 4 is eccentric.

Corollary 4. A tree is eccentric if and only if its diameter is not equal to 3.

Now the eccentric digraphs are characterized. But what condition must meet
the original G to be its eccentric digraph symmetric (i.e. can be described as
a graph)? This problem is only partially solved: the first proposition gives a
characterization for graphs, the second for non-strongly connected digraphs.

Proposition 3. Let G be a graph. Then the eccentric digraph ED(G) is
symmetric if and only if G is self-centered.

Proposition 4. Let G be a non-strongly connected digraph. Then ED(G) is
a symmetric digraph if and only if

G=CLU--UCy (>2) or G=FKn = (CLU---UCE) (k> 1),

where C1,...,Cy are strongly connected digraphs.

The remaining unsolved case are the strongly connected but not symmetric
digraphs. At least the following simple proposition holds:

Proposition 5. Let G be a strongly connected digraph such that ED(QG) is
symmetric. Then the following conditions hold:

(i) mad(G) > 1, unless G is a complete digraph.

(i) If diam(G) = 2 then G is a self-centered graph.

Of course many other interesting questions and problems can be studied for

eccentric digraphs. Some of them are mentioned throughout the series, and
other will certainly appear.

Robert Sdmal

samal@matfyz.cz
Presented paper by Matt J. DeVos, Robert Sdmal

Weak Pentagon Problem/Conjecture is true

Edges of a cubic graph of girth at least 17 can be 5-colored so that the com-
plement of any color class is bipartite. Equivalent formulation is that any such
graph admits a homomorphism to the Clebsch graph (Fig. 1).
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This is an approach to Nesetfil’s Pentagon Problem, it also provides a coloring
version of results of Bondy and Locke and of Hopkins and Staton on the size of
maximal bipartite subgraph.

Introduction and Statement of Results

We start the exposition by relating our result to a theorem about maxcut and
to a conjecture about homomorphism to Cs.

Call a set X C E(G) a cut if there is a set U C V(G) such that X is the set of
all edges between U and V(G) \ U (we write X = §(U)). Let MAXCUT(G) be
the maximum number of edges in a cut in G, we normalize and write

_ MAXCUT(G)
"G = 5@

As determining MAXCUT(G) of a given graph G is known to be NP-complete,
some bounds were seeked for. It is an easy exercise to show that b(G) > 1/2
for any graph G and b(G) > 2/3 when G is a cubic (i.e. 3-regular) graph. The
former inequality is almost attained by a large complete graph, the latter is
attained for G = Kj: any triangle contains at most two edges from any bipartite
subgraph, and every edge of K4 is in the same number of triangles. This shows
triangle has a special role and rises a natural question to determine b(G) for a
cubic G that contains no triangle, or perhaps even no short circuits. In 1980’s
several authors independently considered this problem; the strongest results
being

e b(G) > 4/5 for G with maximum degree 3 and no triangle (Bondy and

Locke)

e b(G@) > 6/7—0(1) for cubic G with girth (the length of the shortest circuit)
tending to infinity (Zyka)
On the other hand, by considering random cubic graph we can prove that there
are cubic graphs of arbitrarily high girth with 5(G) < 0.999 (McKay).

A cut complement is simply a set E(G)\ X for some cut X. The fact b(G) > 4/5
can be reformulated as

(3C C E(GQ)) < — and C is a cut complement.

| =

We prove a strengthening — a coloring version of this holds when G has high
girth.

Theorem 1. Let G be a graph with mazimum degree 3 and girth ot least
17. Then we can partition the edges of G into five cut complements. Moreover,
there is a linear-time algorithm that computes this partition. (Unfortunately,
the constant in this algorithm is too large to be practical.)

We remark that the girth assumption is only forced by our proof, we have good
reasons to believe the following:
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Conjecture 1. Let G be a triangle-free graph with maximum degree 8. Then
we can partition the edges of G into five cut complements.

We conclude the introduction by relating our theorem to the Negetfil’s Pentagon
Conjecture. Recall that a mapping f : V(G) — V(H) is a homomorphism if
f(uw)f(v) is an edge of H for any edge uv of G.

Conjecture 2. If G is a cubic graph of sufficiently high girth then there is a
homomorphism from G to Cs.

When we replace C5 by Cs we get an easy consequence of Brook’s theorem. It
is known that Conjecture 2 is false if we replace C5 by Ci; (Kostocka, Nesetiil,
Smolikovd) , by C9 (Wormald and Wanless) and by C7 (Hatami).

It is easy to prove directly that Conjecture 2, if true, implies Theorem 1. How-
ever, to explain this implication more deeply, we define a new class of graph
mappings that provides the connection.

Call a mapping g : E(G) — E(H) cut-continuous if for every cut X C E(H) its
preimage g~ '(X) is a cut in G. This concept is introduced in a paper by De-
Vos, Nesetfil and Raspaud (as a special case of tension-continuous mappings).
In papers by Negetfil and S4mal its properties are studied in more detail, in
particular the relation between statements “there is a homomorphism from G
to H” and “there is a cut-continuous mapping from G to H” is studied in
greater detail. The first step in this project is the following easy lemma, re-
proved here for the reader’s convenience. In the above-mentioned papers is
shown that, suprisingly, the converse implication is often true.

Lemma 1. Let f : V(G) —» V(H) by a homomorphism. Then mapping
f*: E(G) = E(H) defined by f*(uv) = f(u)f(v) is cut-continuous.

Proof. Let X = §(U) be a cut in H. Then (f*)~1(X) = §(f~1(U)), hence it
is a cut. ¢

Lemma 2. For any graph G the following are equivalent.
1. There is a partition of E(G) into five cut complements.
2. There is a cut-continuous mapping from G to Cs.

Proof. Let g : E(G) = E(Cs) be a cut-continuous mapping. Any four edges
of C5 form a cut. Hence, their preimage is a cut in G. Consequently, if we color
edge e € E(G) by g(e), each of the color classes is a cut complement.

Conversely, every partitioning of E(G) into five cut complements corresponds
to a mapping f : E(G) — E(Cs) such that preimage of every set of four edges
of C5 is a cut. As 4-sets of edges of C5 form a basis of the cut space of C5, the
mapping f is cut-continuous. O

A consequence of Lemma 1 and 2 is that trueness of Conjecture 2 impliess
Theorem 1, as stated above. On the other hand we probably can’t obtain
Conjecture 2 using Theorem 1, as for example Figure 1 shows that Petersen
graph has the desired partition (easily, it has no homomorphism to Cj).
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Figure 1.

Figure 1 shows Petersen and Clebsch graph with one cut complement empha-
sized, the respective bipartition of the vertex set is depicted, too. The other
four cut complements are obtained by a rotation.

This Lemma shows that Reza in his PhD thesis (using results of Guenin) proves
the same result from different assumption.

Theorem. Any planar triangle-free graph admits a homomorphism to the
Clebsch graph.

Tomas Ebenlendr
ebik@artax.karlin.mff.cuni.cz

Online machine covering

We study the problem of machine covering, also called bin covering. This is
related to bin packing, which is generalized form of well known knapsack prob-
lem. All these problems are NP-complete. We consider the online aproximation
of our problem.

Problem: Problem is to schedule jobs (put items into bins), such that all
machines (bins) are covered (overfilled). In our model all machines have the
covering level (bin size) equal. The jobs come one by one and online algorithm
does not know the next job before it decides how to schedule the current one.
It cannot change this decision later.

We want the algorithm to cover same number of machines as number of ma-
chines that can be covered in offline. This is impossible for any online algorithm,
so we lower the covering level of machines (sizes of bins) for it. We ask how
much must be the covering level lowered. The ratio between the original cov-
ering level and the covering level of algorithm we call covering ratio.

Upper bound: We constructed online algorithm that has the covering ratio
of 11/6, and we analysed it by standard technique in bin packing, i.e. assigning
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weights to the jobs, and compare total weights of the machines of the optimal
schedule and the schedule of algorithm. Previous algorithm was the trivial one
with covering ratio of 2.

Lower bound: We also prooved that no online algorithm can have the covering
ratio smaller than 43/24 by defining strategy for the enemy of the algorithm.
This strategy leads to situation in which original schedule has covered one
machine more than the algorithm.

References:

Our article is not published yet. Previous lower bound of 7/4 is in Yossi Azar,
Lea Epstein: “On-line machine covering” in Journal of Scheduling, Vol. 1, pp
67-77, 1998.

Ondrej Plasil

oplasil@centrum.cz

Graph recurrence

The participant has not submitted any abstract.

Premysl Holub

holubpre@kma.zcu.cz

Graph closures

The participant has not submitted any abstract.

Bernard Lidicky

2berny@seznam.cz

Presented paper by Hal A. Kierstead
Asymetric graph coloring games

(http://www.interscience.wiley.com/)

We will introduce asymmetric version of graph coloring game and graph mark-
ing game played by Alice and Bob. Then we will give some bound for these
games.
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Graph coloring game is game played by Alice and Bob on a finite graph G using
set of colors X. Alice is playing first. At the beginning all vertices of G are
uncolored. In each turn player chooses any uncolored vertex v and colors it
such that any colored neighbor of v has different color than v has. Alice wins if
they finally color all vertices. Bob wins if at some time one of the players has
no legal move. We may define game chromatic number of G as the least integer
i such that Alice has a winning strategy when the game is played on G using ¢
colors. Game chromatic number is denoted by x,(G).

Now we may define asymmetric version of the graph coloring game. The (a,b)-
coloring game is played like coloring game but in each turn Alice marks a
vertices and Bob marks b vertices. Simply we let players to color more vertices
in one turn. You may note that (1,1)-coloring game is just an ordinary coloring
game. The (a,b)-game chromatic number of G is the least integer ¢ such that
Alice has a winning strategy when (a,b)-coloring game is played on G using ¢
colors. The (a,b)-game chromatic number is denoted by x,(G;a,b)

Graph marking game is a simplified version of graph coloring game. It is useful
for upper bound proofs. Graph marking game is played by Alice and Bob on a
finite graph G. Alice is playing first. At the beginning of the game all vertices
are unmarked. In each turn player chooses one unmarked vertex and marks it.
The game end when all vertices are marked. Note that there is no winner or
looser. We define col,(G) as the least integer i such that Alice has a strategy
when played on G such that in each turn every unmarked vertex has strictly
less marked neighbors than i. It is easy to see that x,(G) < coly(G). Alice may
use same strategy for coloring and marking game and color vertices by first-fit.

We also define (a,b)-marking game. Alice plays by marking a vertices and Bob
plays by marking b vertices. We also will examine (a,b)-game coloring number
denoted by coly(G; a,b). It will be the least integer ¢ such that after each marked
vertex all unmarked vertices has strictly less than ¢ marked neighbors. It is not
sufficient to check marked neighbors after end of turn but we really need to check
them when a vertex is marked. It then follows that x,(G;a,b) < coly(G;a,b).

Next we show the main theorem that gives upper and lower bounds for game
coloring number and game chromatic number when played on class F of forests.

For a class of graphs C let
Xg(C;a,b) = max X, (G;a,b) and coly(C;a,b) = max coly(G;a,b)

Theorem. Let a and b be positive integers.
e Ifa < b then x4(F;a,b) = coly(F;a,b) = oco.
o Ifb<a then b+ 2 < x4(F;a,b) < coly(F;a,b) <b+3.
If b < a < max{2b,3} then b+ 3 < x4(F;a,b).
If 4 <2b < a < 3b then x4(F;a,b) <b+2< b+ 3 < coly(F;a,b).
If 3b < a then coly(F;a,b) < b+ 2.
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Proofs of upper bounds are based on Alice’s strategy for graph coloring game
on a tree graph. Proofs of lower bounds shows Bob’s strategy. It works on trees
with many vertices where non-leaf vertices has a large degree.

Since the main theorem isn’t easy to read article provides a corollary of the
main theorem.
Corollary. Let a and b be positive integers.
o Ifb<a<2bor(a,b)=(2,1) then x4(F;a,b) = coly(F;a,b) =b+3.
o If2b<a<3bandb>1 then x4(F;a,b) =b+2 and coly(F;a,b) =b+3.
e If3b < a then x4(F;a,b) = coly(F;a,b) =b+2.
Example of (1,2)-coloring game with three colors:

R

o

Pene

Alice and Bob may play like drawn on the picture. Alice lost this game because
she wan’t able to color black vertex in last picture because it’s neighbors have all
three possible colors. But three colors are enough for Alice to win on this graph.
She may color vertex with degree 4 in her first move an then all remaining
vertices has degree strictly less then 3 so 3 tree colors will be enough for her.
So x4(G;a,b) < 3.

Marek Sulovsky

skeeve@popelka.ms.mff.cuni.cz

Presented paper by Benjamin Doerr

Lattice approximation and linear discrepancy
of totally unimodular matrices

The paper introduced to the lattice approximation problem, also known as a
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linear discrepancy problem and showed that this problem can be solved effi-
ciently via linear programming. This method is optimal in the worst case. It
seems to be the first time that linear programming is successfully used for a
discrepancy problem.

In particular it derives an upper bound for the linear discrepancy of totally
unimodular m X n matrix A:

1 1

This bound is sharp. It proves Spencer’s conjecture
lindiso(A) < (1 — ——Yherdisc(A)
indisc < 1 erdisc

for totally unimodular matrices.
Lattice approximation problem, linear discrepancy

Let A € R™*™ be any real matrix and b = Ap,p € R", a point of vector space
generated by columns of A. The lattice approximation problem is to find a
point Az,z € Z™, of the lattice AZ™ = {Az : z € Z™} which is closest to b
i.e. such that |4z — b||co is minimal. We also require ||p — z|| < 1 to hold,
that is, z evolves from p by some rounding procedure.For a given A and p the
approximation error of an optimal approximation is called linear discrepancy
of A with respect to p. The worst case of inapproximability that can occur with
the lattice generated by A is the linear discrepancy of A:

linidsc(A) = lindisc(A,p) = in ||A(p—
inidsc(A) [ fmax lin isc(A, p) pé?oa}i‘]nzg{f}){?}n“ (P —2)lloo

Theorem 1. Let A € R™*™ be a totally unimodular matriz and p € [0,1]™.
Then there is a z € {0,1}"™ such that

1

|A(p — 2)|loc < min{l — T

1
1— =
—}

This can be found efficiently by solving a linear optimization problem in R™ hav-
ing 2(m +n) inequalities and up to m systems of linear equations of dimension
smaller than n x n.

Theorem 2. Let A € R™*™ be a totally unimodular matriz. Then the equality
lindisc(A) =1— n+r1 holds if and only if there is a collection of n + 1 rows of
A such that each n thereof are linarly independent. If lindisc(A,p) =1 — n+r1
for some p € [0,1]", then p; € {H%H,,HLH} for alli € [n].

The second theorem shows that all the all the tight examples are similiar (some-
what generalized) to the one that lead Spencer to his conjecture.
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The fractional chromatic number
of graphs of maximum degree at most three

The paper shows the upperbound of fractional chromatic number of graphs with
small degree. The fractional chromatic number could be defined as follows. Let
k-tuple n-coloring of a graph G = (V, E) be a mapping f : V — (7]), where
(1) is the set of all k-subsets of set 1---n, with an additional condition that for
each two vertices u,v € V holds f(u) N f(v) = §. We simply color the vertices
with sets of colors instead of only one color. Then the fractional chromatic
number Xy of G is the minimum of £ such that there exist a k-tuple n-coloring
of G. We can easily see that the fractional chromatic number is greater or equal
to classical chromatic number so it is more precise characterization of graph.

Main Theorem. If G is triangle free with maximum degree at most three,
then x5(G) <3 - &

So it shows there is an upperbound and the trivial 3-coloring of the graph can
be improved. The prove is based on constructing the k + 1-tuple 3k-coloring of
the graph, where k is 63, but as authors say it can be slightly improved with
some difficulties.

Conjecture. Fvery triangle free graph with mazimum degree at most three
has fractional chromatic number at most % =3- %

The authors thinks this Conjecture is true but the Main Theorem do not lead
any closer to proving it.

Jiri Fink
fink@atrey.karlin.mff.cuni.cz

Presented paper by Ian Parberry

On the Computational Complexity
of Optimal Sorting Network Verification

(http://hercule.csci.unt.edu/"ian/pubs/snverify.pdf)

A sorting network is a combinational circuit for sorting, constructed from
comparison-swap units. The depth of such a circuit is a measure of its run-
ning time. It is reasonable to hypothesize that only the fastest (that is, the
shallowest) networks are likely to be fabricated. It is shown that the problem
of verifying that a given sorting network actually sorts is co-NP complete even
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for sorting networks of depth only 4logn + O(1) greater than optimal. This is
shallower than previous depth bounds by a factor of two.

The Reduction

In order to show that NONSORT is NP-complete, it is sufficient to show that
B3SAT o« NONSORT. Suppose we are given an instance of B3SAT, that is, a

list of clauses C' = (Ch,...,Cy) over a set of variables V' = {v1,...,v,} such
that every variable in V appears exactly three times in C. We will construct
a comparator network with 5n inputs. An input z = (21,...,%5,) to the

comparator network is said to correspond to assignment S for C iff for all
1<i<n,z€ (0°x1%", and v; € S iff z5,_4 = 1. Our comparator network
will sort only inputs that do not correspond to satisfying assignments for C', that
is, inputs that do not correspond to any assignment, and inputs that correspond
to nonsatisfying assignments. Therefore, it will be a sorting network iff C is
not satisfiable.

Petr Kucera
kucerap@kti.ms.mff.cuni.cz

Augmentation problems

The participant has not submitted any abstract.
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Presented paper by Nati Linial, Avi Wigderson

Expander graphs I. — Introduction
(http:/ /www.math.ias.edu/ "boaz/ExpanderCourse/)

Since the introduction of expander graphs in the 1970’s they have turned out to
be very significant. They have been used in solving problems in communication
and the construction of error codes as well as a tool for proving results in
number theory and computational complexity.

In the following, we define the notion of expansion and examine some linear
algebraical properties of expanders.

Definition. The edge boundary of a set S, denoted 85, is 8S = E(S, S). This
is the set of edges outgoing from S.

25



Definition. The expansion parameter of G, denoted by h(G), is defined as

follows: e

h(G) = mm{sws%}u-
S|

We note that there are other notions of expansion that can be studied. The

most popular is counting the number of neighbouring vertices of any small set

S rather than the number of outgoing edges.

Definition. A family of expander graphs {G;}, where i € N, is a collection of
graphs with the following properties:

e The graph G; is a d-regular graph of n; vertices (d is the same constant for
the whole family). {n;} is a monotone growing series that does not grow
too fast (e.g. nmiy1 < n?).
e For all 4, h(G;) > e > 0.
Now we define a similar (and somewhat simpler) graph property.

Definition. Let G be a two-sided graph with n vertices on each side. Let L be
the vertices of the left side and R the vertices on the right. Assume that any
vertex in L has d neighbours in R. We say that G is a (d,n)-hairy graph if it
has the following two properties:

e For any S C L such that S| < 32: I'(S) > [S|4
e For any S C L such that 35 < [S| < §: T'(S) > |S|+ 35
where T'(9) is the set of neighbours of S in G.

The existence of hairy graphs. For each d > 8 and a sufficiently large n
there exists a (d,n)-hairy graph.

Moreover, we prove that for any 0 < € < 1 there exists an ng such that for all
n > ng the following is true: the graph with both L and R containing n vertices
and with every vertex in L having d random neighbours in R, is (d,n)-hairy
with the probability L.

The spectrum of an expander graph

The adjacency matrix of a graph G, denoted A(G), is an n X n matrix that for
each (u,v) contains the number of edges in G between the vertex u and the
vertex v. Since the graph G is d-regular, the sum of each row and column is d.
By definition the matrix A(G) is symmetric, and therefore it has an orthonormal
base vg, v1, ..., Un—1, with eigenvalues Ag, A1, ..., Ap—1. The eigenvalues of
A(G) are called the spectrum of G.

The spectrum contains a lot of information regarding the graph. Here are
some examples of observations that demonstrate this connection between the
spectrum of a d-regular graph and its properties:

Spectral properties of a d-regular graph.
o )\0 =d
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e the graph is connected iff g > A1
e the graph is bipartite iff Ag = —Ap—1.
In the rest, we will examine the connection between the expansion of a graph

and its spectrum. In particular, the graph’s second eigenvalue is related to the
expansion parameter of the graph.

The spectral gap bounds.

A < (@) < Vadd—n)

This theorem proves that d — Ay, also known as the spectral gap, can give a
good estimate on the expansion of a graph. Moreover, the graph is an expander
(h(G) > ¢) if and only if the spectral gap is bounded (d — \; > ¢&').

The expander mixing theorem. Denote A = max(|\1],|An—1|). Then for
all S, TCV:
d|S||T
(s, 7)) - P < s,

The lower bound for ). For every d-regular graph the following is true:

A>2Vd—1-0,(1).

Vit Jelinek

jelinek@kam.mff.cuni.cz

Presented paper by V. Jelinek, J. Kynécl, R. Stolat, T. Valla

Monochromatic triangles in a two-colored plane

We investigate the following general problem, suggested by Erdés, Graham,
Montgomery, Rothschild, Spencer and Straus [1,2,3] in 1973: Let T be a given
configuration of three points. Is it true that for every two-coloring x of the
plane we can find a monochromatic translated and rotated copy of T'? It can
be easily checked that if T is the vertex set of an equilateral triangle, and x* is
a coloring of the plane consisting of alternating half-open parallel strips whose
width is equal to the height of T', then x* does not contain a monochromatic
copy of T. Erd6s et al.[3] have conjectured that this example is essentially
unique; more precisely, they made the following two conjectures:

Weaker conjecture. IfT is the vertex set of a non-equilateral triangle, then
every coloring of the plane contains a monochromatic copy of T .
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Stronger conjecture. If a coloring x avoids a monochromatic copy of a
triple of points T, then T is the verter set of an equilateral triangle and x is
equal to the coloring x* defined above, up to a possible recoloring of the points
on the boundary of the strips.

In the past, it has been shown that the (weaker) conjecture holds for special
classes of triangles, e.g. right triangles [4], but the general conjecture remains
open.

In our research, we focused on testing whether the two conjectures hold for
special classes of plane colorings. We obtained the following results:

First result. If x is a two-coloring of the plane such that the points colored
with one of the colors form a closed set, then x contains a monochromatic copy
of every point triple T.

Second result. The weaker conjecture holds for colorings x that partition the
plane into a tiling of monochromatic plygonal regions (i.e. regions whose bound-
ary is a union of segments). The regions may be unbounded and their boundary
may consist of infinitely many segments, but we assume that every bounded
subset of the plane is intersected by only finitely many boundary segments. We
make no assumptions about the coloring of the boundary.

Third result: Among the polygonal colorings described in the previous para-
graph, there are some counterexamples to the stronger conjecture of Erdés et
al. We are able to give a complete characterization of these “polygonal” coun-
terexamples, and we prove that every polygonal coloring x can be either turned
into such counterexample by recoloring some of the points on the boundary of
the regions, or x contains a monochromatic copy of any triple 7" in such a way
that the vertices of the copy avoid the boundary.
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Expander graphs II. — Applications

Metric space with arbitrary metrics can be embedded into Euclidian space
with common metrics. Generally there is some distortion of the distances. The
expanders with common graph metrics are metric spaces hardest to embed into
Euclidian space.

Definition. We call the tuple (X, d) a metric space if X is set and d is a metric
function such that

ed: X xX - RT

o d(z,y) =0iff z =y

e d(z,y) = d(y, )

o d(z,y) = d(z,2) +d(z,y)

Definition. Metric space L2 (R", ||.||) is an Euclidian metric space with com-
mon metrics.

Given the metric spaces (X, d) and (R, ||.||) and a transformation f : X — R"
we define:

expansion(f) = max W

max —2@172)
z1,22€X ||f(-'171) - f($2)||

distortion(f) = expansion(f) - contraction(f)

contraction(f) =

Finding the Minimal Distortion
Given a metric space (X, d) we denote its minimal distortion by Ca(X,d).

Theorem 1 (Bourgain 1985).  Any n-point metric space (X,d) can be
embedded into O(logn) dimensional Euclidean space with O(logn) distortion.

Theorem 2 (Linial, London, and Rabinovich 1995). There is a polyno-
mial time algorithm which computes Co(X,d).

Theorem 3. There exists explicit formula for finding C2(X,d).
Embedding expander graphs in L2

Let G = (V, E) be a k-regular graph, |V| = n. From theorem 2 this graph can
be embedded with distortion O(logn) in L2. Indeed, take the expander and
put it as a simplex in R™. Since every two nodes of the simplex have distance 1
we get that ex(G) = 1, and co(G) = dis(G) = diam(G). Since G is an expander
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then diam(G) = O(logn). As upcoming Theorem 3 says we can not embed G
with lower distortion than log(n).

Lemma. Let H = (V,E) be a graph with the same vertex set as G. Two
vertices are adjacent in H if their distance in G is at least logk(n) — 2. Then
there exists matching in H on n/2 edges.

Theorem. Let G = (V,E) be a k-regular graph, |V| = n. Then C3(G) =
O(logn).

Ondiej Zajicek
santiago@mail.cz

Presented paper by Omer Reingold, Salil Vadhan, Avi Wigderson
Expander graphs ITI. — The zig-zag construction

The Construction of Constant Degree Expanders
With The Zig-Zag Product

The seminar is based on definition of zig-zag graph product. Using zig-zag
graph product on small and large graph, the resulting graph is larger than the
large one, but its degree only depends on the small one. Expanding property
of product result is inherited from both. The heart of article (and seminar) is
the proof of this property of zig-zag product. Iteration of this product (with
combination of common graph operations like graph squaring and tensor graph
poduct) on fixed graph gives family of constant degree expanders.

Definitions
(N, D, \)-graph is a D-regular graph on N vertices, whose normalized adjacency
matrix has second eigenvalue (in absolute value) at most .

Rotg - Rotation map of graph, function from N x D to N x D, which describes
a graph G. Having fixed numbering of vertices and neighours of every vertex,
Rotg(a,b) = (¢,d) means that b-th neighbour of vertex a is vertex ¢ and d-th
neigbour of vertex c is vertex a.

1’th power of graph G is graph on same set of vertices which has edge for every
connected edge sequence of length 3.

Given D;-regular graph G; on [N;] and Dj-regular graph G2 on [Np], then
G1 ® G2 (tensor product of graphs Gy and G3) is (D; - Da)-regular graph on
[N1 - N2], whose rotation map is as follows:

To compute Rotg,ga,((v,w), (i,7)):
1. Let (#,1) = Rotg, (v,17)
2. Let (,7) = Rotg, (w, j)
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3. Output ((3,@), (i, 7))
Straightforward idea — for first dimension use first graph and for second dimen-
sion use second graph.

Given D;-regular graph G; on [N;] and Da-regular graph G2 on [D;], then
G1® G» (zig-zag product of graphs G and G3) is D3-regular graph on [N;-Dy],
whose rotation map is as follows:
To compute Rotg,g, ¢, ((v,w), (4,7)):

1. Let (k,1) = Rotg,(w, i)

2. let (m,n) = Rotg, (v, k)

3. Let (o,p) = Rotg,(n,j)

4. Output ((m,0), (p,1))

Intuition is that every vertex of G is expanded to cloud — copy of Ga. (i, j)-th
edge from vertex v makes a step in a cloud (by 4), then jump across clouds
(position in cloud is used to select edge in G1) and finally step in a cloud (by

7)-
Theorem 1. If Gy is an (N1, D1, \1)-graph, then G? is an (N1, D?,\2)-graph.

Theorem 2. If Gy is an (N1, D1, A1)-graph and G is a (Na, Da, A2)-graph,
then G1 ® G is a (N1 - Na, D1 - Do,maz (A1, A2))-graph.

Main theorem 1. If Gy is an (N1, D1, A1)-graph and G is a (D1, D2, A2)-
graph, then G1®@ G2 is a (N1 - Dy, D3, f(A1, A2))-graph, where (A1, A2) < A\p +
A2 + A3 and f(Ai,X2)) < 1 when Ay < 1 and X2 < 1. Rotg,ga, can be
computed in time poly(logN,logD1,logD-) with one oracle query to Rotg, and
two oracle queries Rotg,.

Main theorem 2 — Family of expanders. Let H be an (D8, D, \)-graph
for some D and \. Define:

1. Gy = H?
2.Gs=H®H
2
3. Gn = (G121 @ G-1)/2) @ H
Then every G, is an (D8 D? \)-graph, where Ny = X\ + O()\?). Moreover,

Rotg, can be computed in time poly(t,logD), with poly(t) oracle queries to
Rotg.
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Hall’s Theorem for Hypergraphs
(J Graph Theory 35: 83-88, 2000)

We prove a hypergraph version of Hall’s theorem. The proof is topological.
Systems of disjoint representatives

Hypergraph is set of subset (called edges) on some ground set (set of vertices).
Let’s consider some hypergraph G. Matching (in G) is set of disjoint edges of
G.

Let H C G is matching. Then width(H) is min{|M|; M C G is matching and
every edge from H is intersected by some edge from M}.

Let H ={H1,Hs,...,Hy},H1,Hs,...,H, C G. Then System of disjoint rep-
resentatives of H is a mapping f : H — |JH such that for every i # j € N
there is f(Hz) € H; and f(Hz) N f(H]) = 0.

Theorem (if version). Let G be a hypergraph and H = {Hy,...,Hy,} such
that Hy,...,H, C G. Let for every B C H exists a matching Mg C UB such

that width(Mg) > |B|. Then there exists a system of disjoint representatives of
H.

Theorem (if and only if version). VG hypergraph VH = {H;, Hs, ..., H,},
H,,H,,...,H, CG: (VB C H: 3 matching Mg CUB: (VD CC C H : for all
IC] — 1 edges from Mp there exists an edge from Mc which is disjoint with all
of them.)) < 3 System of disjoint representatives.

Jan Hladky

hladk@seznam.cz
Presented paper by R. Aharoni, E. Berger, R. Ziv

A Version of Konig’s Theorem
(Combinatorica, Volume 22 (p. 335-343))

Definition. Definitions: Let H and F' be two hypergraphs on the same vertex
set. A subset C of F' is said to be H-covering if every edge in H meets some
edge from C. The F-width w(H, F) of H is the minimal size of an H-covering
set of edges from F. The F-matching width mw(H, F) of H is the maximum,
over all matchings M in H, of w(M, H). We write w(H) for w(H, H), mw(H)
for mw(H, H).
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The deficiency def(A) of a family A of hypergraphs is the minimal natural
number d such that mw(|J B) > |B| — d for every subfamily B of A.

We used the version of Hall’s theorem by Aharoni and Haxell (the one presented
at SSCO05 by Marek Kréal) and extended it into following:

Theorem 1. FEwvery family A of hypergraphs has a subfamily D of size at most
def(A), such that A\ D has a choice function of disjoint edges.

Theorem 2. Let Hy C Hy be two families of subtrees of a tree. Then
mw(Hl,H2) = w(H]_,HQ).

Theorem 2 follows immediately from Lemma 1:

Lemma 1. Let Hy C H> be families of subtrees of a given tree, let c,d € H
be any two intersecting edges. Then w(Hy \ {c}, H2) = w(H1,H2) or w(H; \
{d}, H2) = w(Hy, H,).

Lemma 1 is proved by contradiction: we consider the minimal H;-covering C,
and suppose that w(H; \ {c}, H2) = w(Hy,H2) — 1 and w(H; \ {d}, H2) =
w(H;, H2) — 1, and obtain contradiction with the minimality of C.
Definition. A hypergraph H is a point-tree hypergraph if, for some set X and
a tree T whose vertex set is disjoint from X, each edge e € H is of the form
z U V(t), where z = z(e) UX and ¢t = t(e) is a subtree of T' . For such a
hypergraph we denote by o(H) the number w(H, F), where F' = z(e) : e € HU
V(t(e)) : e € H. The matching number v(H) of a hypergraph H is the maximal
size of a matching in H.

The main result is Theorem 3 which follows quite straightforward from Theo-
rem 1 and Theorem 2. This extends Konig’s theorem:

Theorem 3. Let H be a point-tree hypergraph. Then o(H) < v(H)
Using Theorem 3 a conjuncture of B. Reed for chordal graphs is proved.

Jakub Cerny

kuba@kam.mff.cuni.cz

Beautiful proofs of geometric theorems

In the talk we presented several geometric theorems which seems to be hard
and have complicated proofs, but there were discoverd very simple proofs using
beautiful tricks.

The first is so called Slope problem. We have n points in the plane, not all
lying on the line. How many slopes can be determined by the lines passing
through each two points? Many of these lines can be parallel so they determine
the same slope. There are constructions of n points in the plane determining
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at least n — 1 slopes for n odd and at least n slopes for n even. We show
that it cannot be less. In the proof we reduce the slope problem to another
combinatorial problem — to so called allowable sequences. In the second step of
the proof we easily show, that the sequence has the lenght at least n.

The second theorem is about Geometric graphs. Geometric Graph is a graph
drawn in the plane that the vertices are points in the plane and edges are
straight line segments. There are many problems on geometric graphs. One of
the big class of problems are extremal questions (Turan type questions). How
many edges can have a geometric graph on n vertices without containing a
forbidden subconfiguration? I.e. geometric graphs with no two crossing edges
are plane graphs. They have at most 3n—6 edges. What about similar question.
How many edges can a geometric graph with no two disjoint edges have? By
a nice dischargeing technique it can be shown, that at most n. Moreover there
are geometric graphs on n vertices with n edges. So this result is tight. A
little more general question is the following. How many edges can a geometric
graph on n vertices with no k + 1 pairwise disjoint edges have? It can have at
most k*n edges. This bound is not the best possible, but it has a very nice
proof using Dilworth theorem. We introduce an order relation on disjoint edges,
apply Dilworth theorem to partition the edge set to at most k& antichains and
for each antichain we apply the previos result for two disjoint edges, because
every antichain doesn’t contain disjoint edges.

The two disjoint edges are parallel iff their convex hull is quadrilateral. The
third theorem says that a geometric graph on n vertices with no two paral-
lel edges can have at most 2n — 2 edges. Its proof uses Davenport-Schinzel
sequences of order two.

The first proof can be found in [1], the second in [2] and the third one in [3].
References
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Presented paper by Vasek Chvatal

Expander application: Optimal sorting networks

Introduction

First we will describe the concept of sorting networks. A sorting network consist
of n wires which hold n input numbers to be sorted. Then it contains elementary
devices called comparators attached to exactly two wires which rearranges the
numbers on the wires such that the lesser is placed on the left wire and the
greater on the right wire. Some comparators can be placed on the same level,
some not. The computation of a sorting network is parallel, the input bubbles
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down through the comparators and the time complexity is measured by this
number of parallel steps, thus in the number of levels, also called the depth.

Every correct sorting network has to have at least Q(logn) levels. To see this
consider arbitrary sorting network with depth d. Choose one wire and note
that on every level the number of possible input wires doubles. Therefore, to
cover all n input wires one needs d = logn levels. First we presented the simple
bitonic sorter scheme that yields the time ©(log® n).

In the main part of the talk we showed the basic components of the ©(logn)
sorting network. The first O(logn) sorting network was built in 1983 by Ajtai,
Komlés and Szemerédi [1] but was terribly complicated. In 1990 Paterson [2]
described a much simpler scheme which was later more simplified and some
details were filled in by Chvatal.

The Network

A perfect halver is a device, which reads a wires and outputs the smaller a/2
number at the first a/2 output wires and the bigger a/2 number at the second
a/2 output wires. Given a perfect halver construction we could design a sorting
network consisting of a balanced tree of logn depth and at each node having a
perfect halver as a subroutine. Unfortunaly, one can show that also this module
needs Q(log a) levels, thus resulting into an Q(log®n) network.

Instead, we will construct an imperfect halver. Like the output wires of a
perfect halver, the output wires of the weaker module are split into blocks
By, Br such that |Br| = |Bgr| = a/2. Unlike a perfect halver, the weaker
module may misdirect a small fraction of the smaller a/2 input keys into Bg
and it may misdirect a small fraction of the larger a/2 input keys to Br. A
partial compensation for this defect is an explicitly designated set F' of output
wires (typically about 5% of their total) such that for every input of a distinct
keys, most of the smallest keys end up in F'N By, and most of the largest keys
end up in F'N Bpg.

At each time ¢, each node that holds any wires at all uses them as input wires
of an imperfect module; between times ¢ and ¢ + 1, it sends all the wires of the
output block F' to its parent, it sends all the wires of the output block By, \ F
to its left child and it sends all the wires of the ouput block Bg \ F to its right
child. The n wires are distributed throughout the tree in such a way that the
actual number of wires held in a node x depends only on ¢ and on the depth i
of z; we let a(i,t) denote this number. To relocate wires between times ¢ and
t + 1, each node on level i sends 7(i,t) wires to its parent and it sends x(i,t)
wires to each of its two children.

Of course one has to carefully set all these numbers. We omit the details.
Then, we have to prove that the network really sorts and that it sorts fast. Let
a(t) and w(t) denote the top and the bottom level, respectively, that contain
nonempty nodes at time ¢. It could be proven that «a(t) first oscillate between
0 and 1 and then begins a periodic zig-zag descent with period four and the
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average speed of one level per two iterations. Similarly, w(t) descends steadily
in a periodic zig-zag movement with period 3 and the average speed of one level
per three iterations. We omit all technical proofs and details, as well as the
extremely complicated analysis of the body, therefore having

Theorem. The designed network is correct and works in O(logn) time.
The Modules

By bipartite (n,d, u)-expander, we shall mean a bipartite graph G such that
(i) G has n vertices in each part,

(ii) the edge-set is the union of d matchings,

(iii) every nonempty set S of vertices in one part of G has

|NG(S) > min{u|S],n — |S[}.
Theorem. If u and d are positive integers such that

d
1
]_ n+2 L < —
(4 +1)e (Nle 3

then, for every positive integer n, there is a bipartite (n,d, u)-expander.

The proof is probabilistic. We describe an algorithm that is able to generate
all graphs consisting of all unions of d matchings, which are not expanders. We
count the number B of these graphs and we prove that the probability there
exist an expander is strictly less than 1, thus actually proving the existence of
arbitrary large expander.

As a first step, we construct a simpler device than it is actually used. By

and strong (2n,€)-halver, we shall mean a comparator network on 2n wires

with the output wires collected in equally sized block By, Bg so that, for every

k=1,2,...,n,

(i) the network places at most ek of its k smallest input keys into output block
Bpg and

(ii) the network places at most ek of its k largest input keys into output block
By.

Theorem. For every positive € there is a positive integer d such that, for
every positive integer n, there is a strong (2n,e)-halver of depth d.

The construction is quite straighforward from the expander graph G. The
2n wires are identified with the 2n vertices of G. The t-th layer in the series
decomposition of E(G) into d layers is defined by the ¢-th matching M; of E(G):
its comparators are precisely the edges of M;. It is quite easy to show that this
method yield a valid (2n,¢)-halver.
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Finally, we recursively construct the really used device, called (a, f,ep,eF)-
separator (the constants here control the quality of the module). We omit the
construction details.

Theorem. For every choice of positive eg,er and J, there is a positive
integer d such that, for every choice of positive even integers a and f such that
da < f < a, there is and (a, f,eB,er)-separator of depth d.

References
[1] M. Ajtai, J. Komlds, E. Szemerédi (1983a), An O(logn) sorting network,
Proc. 15th Ann. ACM symp. on Theory of Computing, pp. 1-9.

[2] M.S. Paterson (1990), Improved sorting networks with O(logn) depth, Al-
gorithmica 5, 75-92.
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The Loebl conjecture

Loebl conjectured that, if a graph of order n has at least half of its vertices
of degree at least 7, then it contains, as a subgraph, any tree with at most %
edges.

My talk was divided into two parts: the first part was about a result by myself
and Maya Stein, the second part was about a result by Ajtai, Komlés and
Szemerédi.

Theorem (D. P. and Maya Stein). The Loebl conjecture is true for trees
with diameter at most 5, where we understand the diameter of a graph as the
mazimum distance between two of its vertices.

The main idea of the proof is the following: we subdivide the set of vertices of
that graph G into two sets V7 and V4, where V; is the set of vertices of degree
at least g and V3 is its complement, i.e. V5 := V \ V;. We set also the set
B C Vi as the set of vertices in V7 that have at least % neighbours in V7 and
C C V; as the set of vertices in V> that have at least 7 neighbours in V;. Then
we show that if there exists an edge {z,y} that either

—|IN@)nVi| > %, y€Viand [IN(y)N(ViUC)| > For—z € B,y €V and
then we can embed in the graph any tree T with diam(T) < 5. The second
part of the proof is to show that the graph G contains an edge with one of the
mentioned properties. A more detailed proof of the result should soon appear
in ITI and KAM-series.
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The second part of the talk was on a paper from Ajtai, Komldés and Szemerédi:
On a conjecture of Loebl (Preprint). The result of this paper is the following
theorem:

Theorem (Ajtai, Komlds, Szemerédi). For any m > 0, there exists an
ng such that for any n > ng, the following holds: If G is a graph of order n
such that at least (1 + )% of its vertices have degree at least (1+ )%, then G
contains as a subgraph any tree with at most 5 edges.

The main tool in the proof is Szemerédi’s regularity lemma.

Theorem (Szemerédi). For any e,a > 0 and m € N, there exists an
ng, M € N such that for any graph G = (V,E) on n > ng vertices, there
exists a partition V. = Vo U VL U...U VN of its vertices with m < N < M
such that 1) |Vo| < en, 2) |Vi| = [Va| = ... = |Vn|, 8) all but at most eN?
pairs (Vi,V;), 4,§ # 0 are regular. We say that (V;,V;) is regular if for any
U; C Vi, Uj CVj such that |U;|,|U;| > a|V;|, we have that

e(U’uU]) e(vthv_;)
— <Eg,
[UillU;] ViV

where e(A, B) is the number of edges between A and B.

After stating this theorem, I showed some typical use of it: to erase “ugly”
edges, i.e. edges that: —are contained inside a cluster (partition classes are
called clusters), ~have non-empty intersection with V5, —are contained in non-
regular pairs, —are contained in regular pairs with low density (< p).

There are so few such edges (choosing €, m, p in a proper way) that the resulting
graph G, has similar property as the graph G: at least (1 + 7)% vertices have
degree at least (1 + g)% Also T showed that we can estimate the degree of
most vertices of a cluster in G, by knowing the average degree of this cluster.
I finished my talk by showing the basic ideas of the rest of the proof, i.e. that
we partition the tree T into T4 and T in a particular way, that we find two
neighbouring clusters A and B in G, with high average degree such that a
matching M covers almost all of their neighbours, that we partition M into
My and Mp depending on |T4| and |Tg| and that, at the end, we embed the
tree T such that T4 is embedded into AUM 4 and T’g is embedded into BUMp.
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On the complexity of the balanced
vertex ordering problem

Introduction

We study the complexity of finding a ‘balanced’ ordering of the vertices of
the graph that is used by a several graph drawing algorithms as a starting
point. Here balanced means that neighbours of each vertex v are as evenly
distributed to the left and right of v as possible. The problem of determining
such an ordering was recently studied by Biedl [1]. We solve a number of open
problems from [1] and study a few other related problems.

Let G = (V, E) be a multigraph without loops. An ordering of G is a bijection
o:V = {1,...,|V]}. For u,v € V with o(u) < o(v), we say that u is to the
left of v and that v is to the right of u. The imbalance of v € V in o, denoted
by B, (v), is

H{e €E:e={u,v},0(u)<oc®} —|{e€ E:e={u,v},o(u)> a(v)}||.

When the ordering o is clear from the context we simply write B(v) instead of
By (v). The imbalance of ordering o, denoted by B, (G), is ),y Bs(v). The
minimum value of B, (G), taken over all orderings o of G, is denoted by M (G).
An ordering with imbalance M (G) is called minimum. Clearly the following
two facts hold for any ordering;:

E very vertex of odd degree has imbalance at least one.

T he two vertices at the beginning and at the end of any ordering have im-
balance equal to their degrees.

These two facts imply the following lower bound on the imbalance of an order-
ing. Let odd(A) denote the number of odd degree vertices among the vertices of
ACV. Let (dy,-..,d,) be the sequence of vertex degrees of G, where d; < d; 1
forall 1 <i<mn-—1. Then

B,(G) > 0dd(V) — (d; mod 2) — (d2 mod 2) + dy + da.

An ordering o is perfect if the above inequality holds with equality. Perfect
ordering is the decision problem whether a given multigraph G has a perfect
ordering. This problem is clearly in NP.

Results
Whether the balanced ordering problem is efficiently solvable for planar graphs

with maximum degree four is of particular interest since a number of algorithms
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for producing orthogonal drawings of planar graphs with maximum degree four
start with a balanced ordering of the vertices. We answer this question in the
negative:

Theorem. The perfect ordering problem is NP-complete for planar graphs
with mazximum degree four.

As the problem we reduce from we use the planar 2-in-4sat. The NP-complete-
ness of this problem is also shown in our paper. Next we study the case of
regular graphs and prove:

Theorem. The perfect ordering problem is NP-complete for 5-regular multi-
graphs.

Using a few lemmas we also show that:

Corollary. It is NP-hard to find a minimum ordering for 5-regular simple
graphs.

In the end we describe algorithms solving at least some special cases in a poly-
nomial time. The algorithms are base on the following lemma:

Lemma. There is an O(n + m) time algorithm to test whether a multigraph
G with n vertices and m edges has an ordering in which a given list of vertices
imbalanced = (vy,...,v;) are the only imbalanced vertices, and o(v;) < o(vit1)
foralll1 <i<k-—1.

The following theorem is a consequence of the previous lemma:

Theorem. There is an algorithm that, given an n-vertex m-edge multigraph
G, computes a minimum ordering of G with at most k imbalanced vertices (or
answers that there is no such ordering) in time O(n* - (m + n)).

Corollary. There is a polynomial time algorithm to determine whether a
giwen multigraph G has an ordering with imbalance less than a fixed constant c.

Corollary. The perfect ordering problem is solvable in time O(n?(n+m)) for
any n-vertex m-edge multigraph with all vertices of even degree.

[1] Therese Biedl, Timothy Chan, Yashar Ganjali, Mohammad Taghi Haji-
aghayi, David R. Wood, Balanced vertex-orderings of graphs, Discrete Applied
Mathematics 148(1), pp. 27-48, 2005.
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The homomorphism order of graphs

By a ‘graph’, we mean a simple undirected graph without loops.
y a ‘grap g
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Let G = (V, E), H = (W, F) be two graphs. A mapping f : V — W is a homo-
morphism from G to H if for every edge {z,y} € E the image {f(z), f(y)} € F,
i.e. if the mapping preserves edges. In such a case we write f: G — H.

It is obvious that the identity mapping on the vertex set is a homomorphism
from an arbitrary graph to itself, and that the composition of two homomor-
phisms is a homomorphism as well.

Therefore the binary relation — on the class of all graphs, defined by G — H iff
there exists a homomorphism from G to H, is a reflexive and transitive relation,
a quasiorder. If G — H, we say that G is homomorphic to H.

If G - H and H — @, we say that G and H are homomorphically equivalent
and write G < H. Clearly, this relation is an equivalence relation on the class
of graphs. The quasiorder — induces a partial order on the set of <>-equivalence
classes; this partial order is called the homomorphism order and denoted by C.

When talking about this order, we (somewhat carelessly) speak about the order
of graphs, while we in fact mean the order of equivalence classes. We also use
the notation G < H instead of G — H and we write G < H if G — H and
H 4 G. If both G A H and H A G, we write G || H.

Besides the quasiorder of graphs and the partial order of equivalence classes,
there is yet another point of view for C. In each equivalence class there exists
a unique (up to isomorphism) distinguished graph called a core.

We say that a graph G is a core if it is not homomorphic to any proper subgraph
of itself.

It can be shown that two cores are isomorphic if and only if they are homo-
morphically equivalent. Moreover, every graph is homomorphically equivalent
to a core (consider the smallest of images of all homomorphisms from G to G).
Consequently, every graph G is homomorphically equivalent to a unique core;
it is called the core of G.

The homomorphism order is a lattice: every 2-element subset {G, H} has its
supremum G' U H and its infimum G x H. The first is the disjoint union of the
two graphs and the latter the categorical product of graphs; for G = (V, E) and
H = (W,F) we have V(G x H) =V x W and E(G x H) = {{(u,v), (z,y)} :
{u,z} € E, {v,y} € F}.

Now, let’s show the existence of an infinite antichain in C. In fact, it is a
consequence of the following much stronger statement.

Theorem 1. Whenever G1, Ga, ..., Gy, are non-bipartite graphs that are
mutually incomparable, i.e. for all1 < k <1 < m we have Gy, || Gy, then there
exists a graph G such that G || Gy, for all1 < k < m.

For the proof, we make use of the following famous theorem by Erdds (1959).

Theorem 2 (Erdds Magic). For arbitrary positive integers g and k, there
exists a graph G of girth at least g and chromatic number at least k.
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Note that x(G) < k if and only if G — K. Therefore, if x(H) < x(G), then
G 4 H. Also note that Cogy1 — Co41 if and only if k > [. Consequently, we
have that G — H implies that the odd girth of G is at least as large as the odd
girth of H.

Thus, to prove Theorem 1 it suffices to let Erdés Magic produce a graph G hav-
ing both chromatic number and (odd) girth greater than all of the graphs Gy.

Another interesting property of the homomorphism order is its universality.

Theorem 3. FEvery countable partially ordered set is isomorphic to a subposet
of C.

The proof of this theorem is complicated, but it is easy to show universality for
finite posets. It is well-known that every finite poset is isomorphic to a suborder
of (2%, C) for a finite set X. We may assume that X = {1,2,...,m}. Let Gy,
Gs, ..., Gy, be mutually incomparable graphs such that the odd girth of Gy,
is 2k + 1 and the chromatic number of G} is k. We construct a suborder of C
isomorphic to (2%, C) by assigning to each subset M of X the graph

Gu = G
keM
One can easily check that M C N if and only if Gy — Gn.

Finally, we characterise all gaps in C. A gap is a pair of graphs (F, H) such
that F' < H and such that there is no graph G with FF < G < H.

Theorem 4. The only gap in the homomorphism order is (K1, K»).

It is enough to prove that whenever F', H are cores, F' < H and H is not
bipartite, there exists a graph G such that FF < G < H.

Let J be an (Erdés Magic) graph with odd girth greater than the odd girth
of H and x(J) > |V/(F)|VUI, Let G = Fu (J x H).

Obviously, F — G and G — H (recall that J x H is the infimum of the two
graphs).

Assume H — G. This implies the existence of a connected component C of H
such that C — J x H (otherwise H would be homomorphic to F, contrary to
our assumptions). Therefore C' — J, because J x H — J (the product is the

infimum). This is a contradiction, since the odd girth of J is bigger than the
odd girth of C.

Now suppose that G — F. Let f : J x H — F. For every vertex u of J
define the mapping f, : V(H) — V(F) by fu(z) = f(u,z). The number of
all mappings from V(H) to V(F) is |V (F)|VE)! < x(J), so there exist two
adjacent vertices u, v of J such that f, = f,. We claim that this mapping
fu = fv is a homomorphism from H to F, contradicting that F' < H. Indeed,
if {z,y} is an edge of H,

{fu(@), fu)} = {Ful@), fo(y)} = {f (v, 2), f(v,9)} € E(F),
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because {(u,z), (v,y)} is an edge of J x H and f is a homomorphism.
That finishes the proof of Theorem 4.

Ales Privétivy
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Presented paper by B. Barak, R. Impagliazzo, A. Wigderson

Extracting randomness using few independent sources

In this work we give the first deterministic extractors from a constant number of
weak sources whose entropy rate is less than 1/2. Specifically, for every § > 0
we give an explicit construction for extracting randomness from a constant
(depending polynomially on 1/§) number of distributions over {0,1}", each
having min-entropy dn. These extractors output n bits, which are 2~ close to
uniform. This construction uses several results from additive number theory,
and in particular a recent one by Bourgain, Katz and Tao and of Konyagin.

We also consider the related problem of constructing randomness dispersers.
For any constant output length m, our dispersers use a constant number of
identical distributions, each with min-entropy Q(logn) and outputs every pos-
sible m-bit string with positive probability. The main tool we use is a variant
of the ”stepping-up lemma” used in establishing lower bound on the Ramsey
number for hypergraphs (Erdds and Hajnal).

Definition. U, denotes the uniform distribution over the set {0,1}" and
dist(X,)) denotes the statistical distance of two distributions X and Y. That
is,

, 1 - .
dist(X,Y) = 5 Z ‘P’I“[X =] — Pr[X =1]|.
i€Supp(X)USupp(Y)

Definition. The min-entropy of a random variable X' , denoted by H>®(X) is
defined as

H>®(X) = in —log Pr[X =il.
(&) ieemin ., ~log r[X = i

Theorem (Existence of a multiple sample extractor). For every con-
stant § > 0 there exists a constant | = (1/8)°(") and a polynomial time com-
putable function Ext : {0,1}™! — {0,1}" such that for every independent ran-
dom variables X1, Xa,...,X; over {0,1}™ satisfying H®(X;) > dn for every
i=1,...,1, it holds that

dist (Ext(Xy, Xs, ..., X)), Un) < 2740
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Dense minors in graphs of large girth
(Combinatorica 25 (1) (2005) pages 111-116)

Theorem (Thomassen 1983). For any integer k, every graph G of girth
g(c) > 4k — 3 and 6(G) > 3 has a minor H with §(H) > k.

Our Main aim is to reduce the upper bound for the required girth to the correct
order of magnitude:

Theorem. For any integer k, every graph G of girth g(c) > 6logk + 3 and
0(G) > 3 has a minor H with 6(H) > k.

Corollary. There exists a constant ¢ € R such that every graph G of girth
g(c) > 6logr + 3loglogr + ¢ and §(G) < 3 has a K, minor.

Lemma (Mader). In a graph of girth g(G) > 2d+1 and §(G) < 3 the d-ball
around a vertez x is a tree T, sending at least |T,| — 2 edges to the rest of G.

Lemma. Let T be a tree with root r in which no vertex has exactly one
successor, and let d € N. Then Y, ;27" |L’T| > |V7‘{T|.

Breef overview of the proof: Put |logk| =: d and let X be a maximal set of
vertices such that d(z,y) > 2d for all distinct z,y € X. Starts from 79 := {z}
for all x € X and using induction we construct trees T3 which partition the
entire vertex set of G. So T, contain all the vertices of G at distance at most
d from z, T, are induced subgraphs in G and d(w,y) < d(v,z) + 1 whenever
vw € E(G) withv € T, and w € T),.

Let us use Lemma to estimate the number of edges leaving a tree T,. Let T,
denote the subgraph of G induced by 7, and all its neighbours in G which is
again a tree.

Now we show using lemmas and simple observations that if T3 sends edges to
at least 29t other trees Ty, contracting all the trees T, with z € X we then
obtain a minor of G of minimum degree at least 2411 > k, as desired.
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