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Preface

Spring school on Combinatorics is a traditional meeting organized for mem-
bers of the Combinatorial Seminar at Charles University for nearly 30 years.
By now it is internationally well known and it is regularly visited by students,
postdocs and teachers from our cooperating institutions in the DIMATIA and
COMBSTRU networks. In the years 1999–2001, and again in 2004–2006, the
school is supported by ERASMUS–SOCRATES Intensive Programme 503334–
IC–1–2002–1–CZ–ERASMUS–IPUC–1 which includes participation of univer-
sities from Bonn, Berlin, Bordeaux, Barcelona, Pisa and recently Bergen.

Spring Schools are entirely organized and arranged by undegraduate students.
The lectures’ subjects are selected by supervisors from the Department of Ap-
plied Mathematics (KAM) and Institute for Theoretical Computer Science (ITI)
of Charles University as well as from other participating institutions. In con-
trast, the lectures themselves are almost exclusively given by students, both
graduate an undergraduate. This leads to a unique atmosphere of the meeting
which helps the students in further studies and their scientific orientation.

This year the Spring School was organized in Borová Lada, a mountain village
in Šumava hills with a great variety of possibilities for outdoor activities like
hiking a biking. Some of them are mirrored by photos in this volume.

We thank Marek Krčál, Bernard Lidický and Honza Hladký as the main orga-
nizers who also completed this volume. We also thank Robert Šámal, Martin
Mareš, Ondřej Pangrác, Michal Koucký and other colleagues who took part
both in the organization and in the Spring School itself. We hope to meet all
this year’s participants next year!

Jǐŕı Fiala, Jan Kratochv́ıl, Jaroslav Nešetřil
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Abstracts of all talks (in order of appearance)

Vı́t Jeĺınek
jelinek@kam.mff.cuni.cz

Sumsets in semigroups

The aim of my talk is to present a recent combinatorial proof by Nathanson and
Ruzsa of a result of Khovanskii on the size of sumsets in an arbitrary abelian
semigroup.

Let S be an arbitrary abelian semigroup (i.e., S is a set with a commutative
and associative operation ‘+’). For two sets A,B ⊆ S, we write A+B to denote
the set of all elements of S that can be obtained by adding an element of A and
an element of B; in other words, A+B = {a+ b; a ∈ A, b ∈ B}. Moreover, we
write kA for the k-fold sum A+A+ · · · +A.

In early 1990’s, Khovanskii [1,2] proved that for every abelian semigroup S and
any two finite sets A,B ⊆ S, the size of the set B+kA is equal to a polynomial
in k, up to finitely many exceptions; formally, there is a polynomial p and a
constant C such that for every k > C, |B+ kA| = p(k). In 2000, Nathanson [3]
has proved a more general claim:

Theorem 1. For every ` + 1 finite subsets A1, A2, . . . , A`, B of S, there is a
polynomial p with ` variables, and a constant C such that for every `-tuple of
integers k1, . . . , k`, all of them greater than C, we have the identity

|B + k1A1 + k2A2 + · · · + k`A`| = p(k1, . . . , k`).

In 2002, Nathanson and Ruzsa [4] found an elementary and simple proof of this
statement. I will present Nathanson and Ruzsa’s proof in the simplified setting
where B = A1 = . . . = A`, and then I will briefly explain how to adapt the
arguments to prove the theorem in full generality.

References

[1] A. G. Khovanskii: Newton Polyhedron, Hilbert Polynomial and Sums of
Finite Sets, Functional Analysis and Its Applications, 26:276–281 (1992).

[2] A. G. Khovanskii: Sums of Finite Sets, Orbits of Commutative Semigroups
and Hilbert Functions, Functional Analysis and Its Applications, 29:102–112
(1995).

[3] M. Nathanson: Growth of sumsets in abelian semigroups, Semigroup Forum,
61:149–153 (2000).

[4] M. Nathanson, I. Ruzsa: Polynomial growth of sumsets in abelian semi-
groups, Journal de Théorie des Nombres de Bordeaux, 14:2 (2002).
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Alexandr Kazda
alexandr.kazda@seznam.cz

Presented paper by Noga Alon, Eval Lubetzky

Codes and Xor Graph Products

(http://www.math.tau.ac.il/̃ nogaa/PDFS/xor4.pdf)

The article focuses on studying the xor products of graphs. Given the graphs
G and H , their xor product G ·H is the graph with vertex set V (G) × V (H)
(Cartesian product) in which (v1, v2) and (u1, u2) connected iff exactly one of
the following pairs is connected: either v1u1 in G or v2u2 in H . We can then
define Gn by induction. The notion of xor product can be easily generalised
to multigraphs (the only new phenomenon introduced by multigraphs is the
possibility of loops in a graph). Due to the number of issues regarding xor
products that are addressed in the original article, only a part of it will be
referred here.

The main points of interest are the asymptotics of independence and clique
numbers of Gn (denoted α and ω, respectively) as n tends to infinity. Recall
that α(G) is the maximal size of an independent set in G (a set U ⊂ V such
that no two vertices in U are connected) and ω(G) is the maximal size of a
clique in G (a set W ⊂ V such that every pair of vertices in W is conneced).
To be able to compare the speed of growth of these numbers, denote:

xα(G) = lim
n→∞

n
√
α(Gn) = sup

n

n
√
α(Gn)

xω(G) = lim
n→∞

ω(Gn)

n
= sup

n

ω(Gn) − 2

n+ 1
.

The correctness of these definitions stems from the fact that (for α(G) > 0)
the function f(n) = α(Gn) is super-multiplicative (i.e. f(n+m) ≥ f(n)f(m))
and ĝ(n) = ω(Gn−1) − 2 is (for ω(G) > 0) super-additive (i.e. ĝ(n + m) ≥
ĝ(n) + ĝ(m)).

The following bounds for xα are established:

Theorem 1. Let G be a multigraph such that α(G) > 0. Then
√
|V (G)| ≤

xα(G) ≤ |V (G)|.
Theorem 2. Let G = (V,E) be a multigraph and let H be an induced subgraph
on U ⊂ V satisfying α(H) > 0. Then:

xα(H) ≤ xα(G) ≤ xα(H) + |V | − |U |.

Theorem 3. Let G be a loopless nontrivial d-regular graph on n vertices, and
let d = λ1 ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues of G (that is, the eigenvalues
of G’s adjacency matrix). Then:

xα(G) ≤ max(|n− 2d|, 2|λ2|, 2|λn|).
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It can be proven that it is xα(K3) = xα(K4) = 2 (the upper bound is a corollary
of theorem 3).

Call a function f : V → Zk
2 (for some k ≥ 1) a proper representation of G if

there is a bf ∈ {0, 1} such that ∀u, v ∈ V (G), uv ∈ E(G) ⇔ f(u) · f(v) = bf .
The dimension of a proper representation f is dim(f(V )) in Zk

2 .

The following bounds for xω are established:

Theorem 4. If G = (V,E) is a graph with a proper representation f , then
xω(G) ≤ dim(f).

Theorem 5. For every graph G = (V,E) it is xω(G) ≤ |V |
Theorem 6. Let r = pk for some prime p ≥ 3 and k ≥ 1. Then:

r − 1 − r

r + 2
≥ xω(Kr) ≥ r − 1.

While the precise value of the number xω(K3) is not known, it must lie between
1.7 (result of a computer search) and 2 (corollary of theorem 6).

A nice application of this theory is counting the maximum possible number
f3(n) of vectors in {0, 1, 2}n such that the Hamming distance between every pair
is even (i.e. they differ in an even number of components) and the maximum
possible number g3(n) of vectors from the same space such that the Hamming
distance between every pair is odd. It is easy to see that f3(n) = α(Kn

3 ) and
g3(n) = ω(Kn

3 ). Applying the asymptotic for graph products, we obtain that
f3 grows like 2n for large n while g3 surprisingly grows only linearly.

Kjartan Høie
kjartan.hoie@ii.uib.no

Presented paper by P. Hell, J. Nešetřil

A reformulation of Hadwiger’s conjecture

(Graphs and homomorphisms p104-106)

Hadwiger’s conjecture is regarded by many as one of the most challenging open
problems in graph theory and can be viewed as a generalization of the four
colour theorem. It states that: Any graph, G, with chromatic number n contains
Kn as a minor

The conjecture is trivial for n ≤ 2 and relatively easy for n = 3 and n = 4. For
n = 5 and n = 6 it is equivalent to the the four colour theorem. But for n ≥ 7
the conjecture remains open.

I will in my talk present Proposition 3.43 from [Hell, Nesetril: Graphs and
homomorphisms p104-106]. (Also [Naserasr, Nigussie: On the reformulation of
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Hadwiger’s conjecture]). The proposition states that Hadwiger’s conjecture is
equivalent to the following statement: Every proper minor closed class of graphs
has a maximum.

I will present necessary background and go through the proof in detail.

Ondřej Suchý
ondra@s.cz

Presented paper by Henning Fernau

Roman domination: A Parameterized Perspective
(Lecture Notes in Computer Science, Volume 3831 / 2006)

We analyze Roman domination from a parameterized perspective. More specifi-
cally, we prove that this problem is W [2]-complete for general graphs. However,
parameterized algorithms are presented for graphs of bounded treewidth and
for planar graphs. Moreover, it is shown that a parametric dual of Roman

domination is in FPT .

Roman domination is one of the many variants of dominating set problems. It
comes with a nice (hi)story: namely, it should reflect the idea of how to secure
the Roman Empire by positioning the armies (legions) on the various parts of
the Empire in a way that either (1) a specific region r is also the location of
at least one army or (2) one region r′ neighboring r has two armies, so that r′

can afford sending off one army to the region r (in case of an attack) without
loosing self-defense capabilities.

Formally. Let us first formally describe the problem.

To this end, notice that we will use standard notions from graph theory. In
whole talk we deal with simple undirected graphs. N(v) is the open neigh-
borhood of vertex v, and N [v] = N(v) ∪ v is the closed neighborhood. An
instance of Roman domination (ROMAN) is given by a graph G = (V,E),
and the parameter, a positive integer k. The question is: Is there a Roman
domination function R such that R(V ) :=

∑
x∈V R(x) ≤ k? Here, a Roman

domination function of a graph G = (V,E) is a function R : V→{0, 1, 2} with
∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2. DR = R−1({1, 2}) is then the Ro-
man domination set. The minimum of R(V ) over all valid Roman domination
functions R is also called the Roman domination number of a given graph.

Parametrized complexity. In the following, we give the necessary back-

ground on parameterized complexity:

A parameterized problem P is a subset of Σ∗ ×N , where Σ is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
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parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P ) is the set of all YES-instances of P .
We say that the parameterized problem P is fixed-parameter tractable if there
is an algorithm that decides whether an input (I, k) is a member of L(P ) in
time f(k)|I |c, where c is a fixed constant and f(k) is a function independent of
the overall input length |I |. The class of all fixed-parameter tractable problems
is denoted by FPT .

There is also a hardness theory, most notably, the W [t] hierarchy, that comple-
ments fixed-parameter tractability:

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ . . .

It is commonly believed that this hierarchy is strict. Since only the second level
W [2] will be of interest to us in this paper, we will only define that class below.
We do this in the ”Turing way”.

A parameterized reduction is a function r that, for some polynomial p and some
function g, is computable in time O(g(k)p(|I |)) and maps an instance (I, k) of
P onto an instance r(I, k) = (I ′, k′) of P ′ such that (I, k) is a YES-instance of
P if and only if (I ′, k′) is a YES-instance of P ′ and k′ ≤ g(k). We also say that
P reduces to P ′.

W [2] can be characterized by the following problem on Turing machines: An in-
stance of Short multi-tape nondeterministic Turing machine computation (SM-
NTMC) is given by a multi-tape nondeterministic Turing machine M (with
two-way infinite tapes), an input string x, and the parameter, a positive integer
k. The question is: Is there an accepting computation of M on input x that
reaches a final accepting state in at most k steps? More specifically, a parame-
terized problem is in W [2] iff it can be reduced with a parameterized reduction
to Short multi-tape nondeterministic Turing machine computation.

Lemma. Red-blue dominating set, restricted to bipartite graphs is W [2]-hard.

Theorem 1. Roman domination is W [2]-complete.

Theorem 2. Planar Roman domination can be solved in O∗(3.3723k) time,

e.g. is in FPT

Theorem 3. Minimum Roman domination, parameterized by the treewidth

tw(G) of the input graph G, can be solved in time O(5tw(G)|V (G)|).

Another problem. Parametric dual:

Given a graph G and a parameter kd, is there a Roman domination function R
such that |R−1(1)| + 2|R−1(0)| ≥ kd ?

Theorem 4. Our version of parametric dual of Roman domination allows for

a problem kernel of size (7/6)kd, measured in terms of vertices. Hence, this

problem is in FPT .
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Louis Esperet
esperet@labri.fr

(d, 1)-total labelling of sparse graphs

Abstract

The (d, 1)-total number λT
d (G) of a graph G is the width of the smallest range

of integers that suffices to label the vertices and the edges of G so that no two
adjacent vertices have the same color, no two incident edges have the same color
and the distance between the color of a vertex and the color of any incident
edge is at least d. This notion was introduced by Havet and Yu in [1]. In this
paper, we study the (d, 1)-total number of sparse graphs and prove that for any
0 < ε < 1

2 , and any positive integer d, there exists a constant Cd,ε such that for
any ε∆-sparse graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd,ε.

Introduction

In the channel assignment problem, we need to assign frequency bands to trans-
mitters. If two transmitters are too close, interferences will occur if they at-
tempt to transmit on close frequencies. In order to avoid this situation, the
channels assigned must be sufficiently far. Moreover, if two transmitters are
close but not too close, the channels assigned must still be different. Havet and
Yu in [1] and [2] introduced the (d, 1)-total labelling, defined as follows:

The (d, 1)-total labelling of a graph G = (V,E) is a function c : V ∪ E → N
verifying:

(i) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ c(u) 6= c(v)

(ii) ∀(u, v, w) ∈ V 3 : uv ∈ E, uw ∈ E ⇒ c(uv) 6= c(uw)

(iii) ∀(u, v) ∈ V 2 : uv ∈ E ⇒ |c(u) − c(uv)| ≥ d

The span of a (d, 1)-total labelling is the maximum difference between two
assigned integers. The (d, 1)-total number of a graph G, denoted by λT

d (G), is
the minimum span of a (d, 1)-total labelling of G. Notice that the (1, 1)-total
labelling is the traditional total coloring.

Conjecture 1. Let G be a graph with maximum degree ∆, then λT
d (G) ≤

min{∆ + 2d− 1, 2∆ + d− 1}.
Finally, the best known upper bound for general graphs is due to Esperet and
Havet [3] who proved :

Theorem 1. Let G be a graph with maximum degree ∆, then λT
d (G) ≤

∆ +O(log ∆).

In [4], Molloy and Reed proved that the total chromatic number of any graph
with maximum degree ∆ is at most ∆ plus an absolute constant. Moreover, in
[6], they gave a simpler proof of this result for sparse graphs. In this paper, we
generalize their approach to the (d, 1)-total number of sparse graphs.
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A vertex v is called α-sparse iff |E(N(v))| ≤
(
∆
2

)
− α∆. An α-sparse graph is

a graph in which all the vertices are α-sparse.

Our main result is the following :

Theorem 2. For any 0 < ε < 1
2 , and any positive integer d, there exists a

constant Cd,ε such that for any ε∆-sparse graph G with maximum degree ∆,
we have λT

d (G) ≤ ∆ + Cd,ε.

The proof of Theorem 2 is based on a probabilistic approach due to Molloy
and Reed. It uses intensively concentration inequalities as well as Lovász Local
Lemma. Moreover, we conjecture:

Conjecture 2. For any positive integer d, there exists a constant Cd, such
that for any graph G with maximum degree ∆, we have λT

d (G) ≤ ∆ + Cd.

In next section, we present the procedure used to prove Theorem 2. And then
we analyse this procedure. In the following, we will need some probabilistic
tools (see Appendix A and [6] for more details).

Proof of Theorem 2

Since λT
d (G) ≤ 2∆ + d − 1, if we prove that for some ∆0(d, ε) and some Cd,ε,

any ε∆-sparse graph G of maximum degree ∆ ≥ ∆0 verifies λT
d (G) ≤ ∆+Cd,ε,

then Theorem 2 will be proved.

Let φ be a full or partial coloring ofG. Any edge e = uv such that |φ(u)−φ(e)| <
d or/and |φ(v) − φ(e)| < d is called a reject edge. The graph R induced by the
reject edges is called the reject graph. It will be convenient for us to consider
the reject degree of a vertex v, which is the number of edges e = uv such that
|φ(u) − φ(e)| < d. Observe that degR(v) is at most the reject degree of v plus
2d− 1.

Sketch of Proof To prove Theorem 2, we apply the following steps :

Step 1. First, we will color the edges by Vizing’s Theorem using the colors
{1, . . . ,∆}.
Step 2. Then we will use the Naive Coloring Procedure to color the ver-
tices with colors {1, . . . ,∆ + 2d− 1}. This procedure creates reject edges.
However, we can prove that after the procedure, the maximum degree of
the reject graph R is a constant Dd,ε which does not depend on ∆.

Step 3. Finally, we erase the color of the vertices of R and recolor these
vertices greedily with the colors {∆+3d−2, . . . ,∆+3d−1+Dd,ε}. Taking
Cd,ε = Dd,ε + 3d− 2, this proves that λT

d (G) ≤ ∆ + Cd,ε.

We now present the Naive Coloring Procedure.

The Naive Coloring Procedure

For each vertex v, we maintain two lists of colors : Lv and Fv . Lv is the
set of colors which do not appear in the neighborhood of v. Initially, Lv =
{1, . . . ,∆ + 2d − 1}. After iteration I (specified later), Fv will be a set of
forbidden colors. Until iteration I , Fv = ∅.
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During the Naive Coloring procedure, we will perform i∗ (specified later) iter-
ations of the following procedure :

Step 1. Assign to each uncolored vertex v a color choosen uniformly at
random in Lv.

Step 2. Uncolor any vertex which receives the same color as a neighbor in
this iteration.

Step 3.

Iteration i ≤ I . Let v be a vertex having more than T (specified
later) neighbors u which are assigned a color c(u) such that |c(uv) −
c(u)| < d in this iteration. For any v, we uncolor all such neighbors.

Iteration i > I .

(a) Uncolor any vertex v which receives a color from Fv in this
iteration.

(b) Let v be a vertex having more than one neighbor u which is
assigned a color such that |c(uv)− c(u)| < d in this iteration. For
any v, we uncolor all such neighbor.

(c) Let v be a vertex having at least one neighbor u such that
|c(uv)− c(u)| < d in this iteration. For any v, we place {c(vw) −
d+ 1, . . . , c(vw), . . . , c(vw) + d− 1} in Fw for every w ∈ N(v).

Step 4. For any vertex v which retained its color (i.e. which was not
uncolored during a previous step), we remove c(v) from Lu for any u ∈
N(v).

After i∗ iterations of this procedure, we have a partial coloring of G. We then
complete this coloring in order to obtain a reject graph R with a bounded
maximum degree which does not depend on ∆ (Section 4.3).

Analysis of the procedure

The first iteration

Let ζ = ε
2e3 . In this subsection, we prove that:

Claim 1. The first iteration produces a partial coloring with bounded reject
degree for which every vertex has at least ζ

2∆ repeated colors in its neighborhood.

We recall that C = ∆ + 2d − 1 is the initial size of each color list Lv. Let
Av be the number of colors c such that at least two neighbors of v receive the
color c and all such vertices retain their color during Step 2. Let Bv be the
number of neighbors of v which are uncolored at Step 3. Notice that vertices are
uncolored at Step 3 regardless of what happened at Step 2. Let Xv be the event
that “Av < ζ∆”. Let Yv be the event that “Bv ≥ ζ

2∆”. If no type X event
occurs, every vertex has at least ζ∆ repeated colors in its neighborhood at the
end of Step 2. If no type Y event occurs, less than ζ

2∆ vertices are uncolored in
each neighborhood. As a consequence, if we show that with positive probability,
no type X or Y event occurs, Claim 1. will be proved.
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Claim 2. Pr(Xv) < e−α log2 ∆, for a particular constant α > 0.

Claim 3. Pr(Yv) < e−β∆, for a particular constant β > 0.

We now use Lovász Local Lemma to prove Claim 1. Each eventXv only depends
on the colors assigned to the vertices at distance at most 2 from v, and each
event Yv depends on the colors assigned to the vertices at distance at most
3 from v. Hence, each event is mutually independent of all but at most 2∆6

other events. For ∆ sufficiently large, Pr(Xv) <
1

8∆6 and Pr(Yv) < 1
8∆6 . Using

Lovász Local Lemma, this proves that with positive probability no type X or
Y event happens. Thus with positive probability, the first iteration produces a
partial coloring with bounded reject degree, such that each vertex has at least
ζ∆
2 repeated colors in its neighborhood.

The next iterations

Let di =
(
1 − 1

4e
− 2

ζ

)i

∆ and fi = 4(2d−1)
ζ

∑i−1
j=I+1 Dj . Let i∗ be the smallest

integer i such that di ≤
√

∆. Observe that for any i ≤ i∗, we have di ≥
(1 − 1

4e
− 2

ζ )
√

∆.

Claim 4. At the end of each iteration 1 ≤ i ≤ i∗, with positive probability
every vertex has at most di uncolored neighbors, and each list Fv has size at
most fi.

Proof. By induction on i. ♦

The final phase

At this point, we have a partial coloring such that:

- each vertex v has at most
√

∆ uncolored neighbors;

- the reject degree of each vertex is at most IT + 1;

- each vertex has a list of at least ζ∆
2 available colors.

It will be more convenient to use lists of equal sizes. So we arbitrarily delete
colors from each list, so that for every uncolored vertex v, we have |Lv| = ζ∆

2 .
For each uncolored vertex, we choose a subset of colors from Lv which will
be candidates for v and we prove that with positive probability, there exists
a candidate for each uncolored vertex, such that we can complete our partial
coloring of G.

A candidate a for v is said to be good if:

Condition 1 for every neighbor u of v, a is not candidate for u;

Condition 2 for every neighbor u of v, and every neighbor w of u, there
is no candidate b of w such that |c(uv) − a| < d and |c(uw) − b| < d.

If we find a good candidate for every uncolored vertex, Condition 1 ensures that
the vertex coloring obtained is proper, and Condition 2 ensures that no reject
degree increases by more than one.

Claim 5. There exists a set of candidates Sv for each uncolored vertex v, such

14



that each set contains at least one good candidate.

We obtain a coloring of G with maximum reject degree at most IT + 2. So the
reject graph R obtained has maximum degree at most IT +2d+1. We uncolor
the vertices of R and recolor them greedily with the colors {∆+3d−2, . . . ,∆+
IT + 5d}. This final coloring is a (d, 1)-total labelling of G. Since I and T are
independant of ∆, we proved that λT

d (G) ≤ ∆ + Cd,ε.

Remark. By looking carefully at each inequality during the procedure, we can
replace ∆ +Cd,ε by ∆ +Cεd log d, where Cε is a constant that does not depend
on d.

Further work

Theorem 2 can be transformed into a randomized algorithm, using a powerful
technique introduced by Beck [5] and extended to a wide range of applications
of the symmetric form of the Local Lemma by Molloy and Reed [7].
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Jǐŕı Fink
jirka.fink@matfyz.cz

Presented paper by Stephan Brandt

On the structure of graphs with bounded clique number

(Combinatorica, Springer-Verlag)

In a talk, a structural result for maximalKr-free graphs is proven, which proides
a simple proof of thte Andrasfai-Erdos-Sos Theorem, saying that every Kr-free
graph with minimum degree δ > (1 − 1

r−4/3 )n is (r − 1)-colorable.
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The crucial substructure is that of a 5-wheel-like graph Wr,k. This is a graph
consisting of two clique Q1, Q2 of order r − 2, which intersect in exactly k
vertices, where 0 ≤ k < r− 2, together with a vertex v, adjacent to all vertices
of Q1 and Q2 and an edge w1w2, where w1 is adjacent to the vertices of Q1 and
w2 is adjacent to the vertices of Q2.

Proposition. Let G be a maximal Kr-free graph. Then G is either complete
(r − 1)-partite, or G contains a 5-wheel-like subgraph.

Proposition. Let G be a Kr-free graph containing a 5-wheel-like subgraph
Wr,k with top v and bottom w1w2. If δ(G) > 2r+k−4

2r+k−1n then k < r − 3 and G
contains Wr,k+1, having top v and bottom w1w2.

Arnaud Labourel
labourel@labri.fr

Presented paper by Nicolas Bonichon, Cyril Gavoille and Arnaud Labourel

Short Labels by Traversal and Jumping

Abstract

In this paper, we propose an efficient implicit representation of caterpillars and
binary trees with n vertices. Our schemes, called Traversal & Jumping, assign
to vertices of the tree distinct labels of log2 n+O(1) bits, and support constant
time adjacency queries between any two vertices by using only their labels.
Moreover, all the labels can be constructed in O(n) time.

Introduction

Related works The two basic ways of representing a graph are adjacency
matrices and adjacency lists. The latter representation is space efficient for
sparse graphs, but adjacency queries require searching in the list, whereas ma-
trices allow fast queries to the price of a super-linear space. Another technique,
called implicit representation or adjacency labeling scheme, consists in assign-
ing unique labels to each vertex such that adjacency queries can be computed
alone from the labels of the two involved vertices without any extra information
source. The goal is to minimize the maximum length of a label associated with
a vertex while keeping fast adjacency queries.

Adjacency labeling schemes, introduced by [Breuer66,BF67], have been investi-
gated by [KNR88,KNR92]. They construct for several families of graphs adja-
cency labeling schemes with O(log n)-bit labels like labels of size 2dlogne bits
for tree. This result has been improved in a non trivial way by [AKM01]
to 1.5 logn + O(log logn) bits, and more recently to logn + O(log∗ n) bits
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[AR02b], leaving open the question of whether trees enjoy a labeling scheme
with logn+O(1) bit labels.

In this paper we present adjacency labeling schemes for caterpillars (i.e., a tree
whose nonleaf vertices induce a path), and binary trees with n vertices. Both
schemes assign distinct labels of logn + O(1) bits, and support constant time
adjacency queries. Moreover, all the labels can be constructed in O(n) time.
We observe that the recursive scheme of [AR02b] for general trees does not
simplify for caterpillars or binary trees. The worst-case label length remains
logn+O(log∗ n) and the adjacency query time Ω(log∗ n).

Outline of techniques

Roughly speaking, the Traversal & Jumping technique consists in:

S electing a suitable traversal of the tree (or of the graph);

A ssociating with each vertex x some information C(x);

P erforming the traversal and assign the labels with increasing but non nec-
essarily consecutive numbers to the vertices.

Intuitively, the adjacency test between x and y is done on the basis of C(x) and
C(y). Actually, the jumps achieved in Step 3 are done by selecting an interval
associated with each vertex in which its label must be. It is important to note
that the intervals are ordered in the same way as the corresponding vertices in
the traversal. Moreover, all vertex intervals must be disjoint. The position of
the label of x in its interval is tuned in order to encode C(x) in the label in a
self-extracting way. In general, the information C(x) determines the intervals
length of all the neighbours of x which are after in the traversal. The main
difficulty is to design the minimal information C(x) and to tune the jumps, i.e.,
the interval length. The maximum label length is simply determined by the
value of the last label assigned during the traversal.

Preliminaries

We assume a RAM model of computation with Ω(logn)-bit words. In this
model, standard arithmetic operations on words of O(log n) bits can be done
in constant time. Given a binary string A, we denote by |A| its length, and for
a binary string B, A ◦B denotes the concatenation of A followed by B. Given
an x ∈ N, we denote by bin(x) its standard binary representation. A code is a
set of words, and a code is suffix-free if no words of the code is the ending of
another one. A basic property of suffix-free codes it that they can be composed,
by the concatenation of a fixed number of fields, to form new suffix-free codes.
A simple suffix-free code is defined by code0(x) = 1 ◦ 0x, where 0x is the binary
string composed of x zeros. This code extends to more succinct codes defined
recursively by codei+1(x) = bin(x) ◦ codei(|bin(x)| − 1) for every i ≥ 0. It is
easy to check that, for every i ≥ 0, codei is suffix-free. E.g., code0(5) = 100000,
code1(5) = 101 100, and code2(5) = 101 10 10. If a wordw has codei(x) as suffix,
then x can be extracted from w in O(i) time. In this paper, we will essentially
use codei for i ∈ {0, 1, 2}. We check that for every x ∈ N, |code0(x)| = x + 1,
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|code1(x)| = 2blgxc+ 2, and |code2(x)| = blg xc+ 2blgblg xcc+ 3. We can find
a word having the wanted suffix by attributing to the vertex a interval of values
of enough lenght.

Claim. Let w be a word, and z an integer. One can compute in constant time
an integer x ∈ [z, z + 2|w|) such that w is a suffix of bin(x).

Caterpillars

A leaf is a vertex of degree one, and an inner vertex is a nonleaf vertex. A tree
is a caterpillar if the subgraph induced by its inner vertices is a path.

Theorem 1. The family of caterpillars with n vertices enjoys an adjacency
labeling scheme with labels of length at most dlogne+6 bits, supporting constant
time adjacency query. Moreover, all the labels can be constructed in O(n) time.

Consider a caterpillar G of n vertices. We denote by X = {x1, . . . , xk} the inner
vertices of G (ordered along the path). For every i, let Yi = {yi,1, . . . , yi,di

} be
the set of leaves attached to xi, with di = 0 if Yi = ∅. The traversal used in our
scheme is a prefix traversal of the caterpillar rooted at x1 where the vertices
of Yi are traversed before the vertex xi+1. According to this traversal, the
inner vertex xi stores information necessary to determine the adjacency with
the vertices of Yi ∪ {xi+1}. The leaves do not store any specific information in
their label. With each inner vertex xi, we associate an interval I(xi) of length
pi, for some suitable integer pi, in which its label `(xi) must be. The integer pi

must be large enough for xi to store pi+1. To achieve that property, we impose
that ∀i, pi is a power of two (pi = 2ti). So pi need only to store ti+1 = log pi+1.
Moreover, we impose that pi is greater than di in order to store the leaf of xi

in an interval of size pi. The information encoded by xi is the ordered pair
(ti, ti+1). To encode this information, we propose the following suffix-free code:

C(xi) = code0(ti − |code1(ti+1)|) ◦ code1(ti+1) .

We place the leafs of xi in a interval I ′(xi) of size pi = 2ti placed consecutively
to `(xi). Then, we put the interval I(xi+1) assigned to xi+1 right after the
interval.

Now, we must define the adjacency function between x and y. Without loss of
generality, we can assume that `(x) < `(y) and that x = xi is an internal node.
x adjacent to y if and only if `(y) ∈ (`(xi), `(xi) + pi + pi+1]. Clearly, this test
can be computed in constant time from the labels because xi store ti and ti+1

using code0 and code1 and so can compute pi = 2ti and pi+1 = 2ti+1 .

It remains us to show that the maximum value of the labels are in O(n). Due
to the lack of the place, we can not give a complete proof. The important fact
used in the proof is that, the vertex xi encode ti+1 = log pi+1 and not pi+1

using code1 with 2|bin(ti+1)| bits. So, I(xi) is of size 22|bin(ti+1)| = O(log2 pi)
and after some calculation, we show that the greater label have value in O(n).

18



Binary trees

A tree is binary if it is rooted and each inner vertex has at most two children.

Theorem 2. The family of binary trees with n vertices enjoys an adjacency
labeling scheme with labels of length at most logn+O(1) bits, supporting con-
stant time adjacency query. Moreover, all the labels can be constructed in O(n)
time.

Proof. We use the same method as for caterpillar. We choose the prefix traver-
sal in which the children are traversed by growing weight, i.e., the size of the
subtree rooted at the child. Each inner vertex stores the size of the interval of
its both sons and the distance in labels to the interval of its right son. These
informations are enough to compute adjacency. By using good encoding and
approximation of information, we can obtain labels of length logn+O(1) bits.
Due to the lack of space, we cannot give a complete proof of this theorem in this
extended abstract. The reader may refer to [BCA06] for a complete proof. ♦

Conclusion

The unsolved implicit graph representation conjecture of [KNR88,KNR92] asks
whether every hereditary family of graphs with 2O(n log n) labeled graphs of n
vertices enjoys a O(log n)-bit adjacency labeling scheme. This is motivated by
the fact that every family with at least 2cn log n labeled graphs of n vertices
requires adjacency labels of at least c logn bits.

Our schemes suggest that, at least for trees, labels of logn+O(1) bits may be
possible. Therefore, we propose to prove or to disprove the following:

Every hereditary family of graphs with at most n!2O(n) = 2n log n+O(n) labeled
graphs of n vertices enjoys an adjacency labeling scheme with labels of logn+
O(1) bits.

We observe that several well-known families of graphs are concerned by this
proposition: trees, planar graphs, bounded treewidth graphs, graphs of bounded
genus, graphs excluding a fixed minor (cf. [NRTW05] for counting such graphs).
Proving the latter conjecture appears to be hard, e.g., the best upper bound
for planar graphs is only 3 logn+O(log∗ n).

Michal Koucký
koucky@math.cas.cz

A Brief Introduction to Kolmogorov Complexity

Introduction

The set of all finite binary strings is denoted by {0, 1}∗. For x ∈ {0, 1}∗, |x|
denotes the length of x.
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Kolmogorov complexity tries to answer the fundamental question: “What is a
random object?” Consider which of the following (decimal) strings seem to be
random?

33333333333

31415926535

84354279521

Most people would rule out the first one to be random, and they could agree
that the remaining two are random. Indeed, most statisticians would agree that
the latter two are random as they pass essentially all possible statistical tests.
Yet, the second sequence consists of the first eleven digits of π. The third one
is taken really at random.

From the perspective of probability, all three strings have the same probability
of being chosen when we take a string of eleven digits fully at random namely,
each of them has probability 10−11. Hence, they all are equally likely to be ob-
tained by a random process. So probability does not really explain the intuitive
notion of randomness.

Imagine that we would extend our strings to one million digits. Then the first
string would became a million times the digit three, the second one would be
the first million digits of π and the last one would be 84354279521. . . . In fact
it would take us thousand of pages to describe the last one. There is no pattern
in it. It is really random.

Hence, the notion of randomness is connected to patterns in strings and to a
way how we can describe them. The first two strings in our example have very
short descriptions (few words) whereas the last string has very long description
as it lacks any regularity. The longer the necessary description of a string the
more randomness is in the string. This intuition leads to the following definition
of Kolmogorov complexity of a string x ∈ {0, 1}∗: the Kolmogorov complexity
of x is the length of the shortest description of x. Of course the length of the
description depends on the language we use for our description—we can use
Czech or French or English. . . .

We make it formal as follows. Let φ : {0, 1}∗ → {0, 1}∗ be a partial recursive
function. (A partial recursive function is any function f for which there is a
program that takes an input y and produces output f(y). f(y) may not be
defined for some y and the program may not halt on such y’s or to produce any
output.)

Definition. For a string x ∈ {0, 1}∗, the Kolmogorov complexity of x with
respect to φ is

Cφ(x) = min{|p|, p ∈ {0, 1}∗ & φ(p) = x}.
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Let us consider several examples. If φ1 is the identity function φ1(x) = x
then Cφ1

(x) = |x|. If φ2(0) = 10111001011110011010110111 and φ2(1x) = x
then Cφ2

(10111001011110011010110111) = 1 and Cφ1
(x) = |x|+ 1 for all other

strings x. So Kolmogorov complexity depends a lot on the chosen descriptive
language φ. Luckily, the following Invariance Theorem brings some order into
this chaos.

Theorem 1. There exists a partial recursive function U so that for any other
partial recursive function φ there is a constant c > 0 such that

CU (x) ≤ Cφ(x) + c

for all strings x.

A machine U satisfying the preceding theorem is in some sense minimal among
all machines, and we will call it universal.

Proof. The proof is quite simple. Let φ0, φ1, φ2, . . . be an enumeration of all
partial recursive functions. (Every p.r.f. can be associated with a program that
computes it and that program can be uniquely mapped to a (possibly huge)
integer.) Let 〈x, y〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be some simple to compute
one-to-one mapping, e.g., 〈x, y〉 = 0|x|1xy. Then U is defined as follows: On
input w, decode w into i and p such that w = 〈i, p〉 and run φi on input p. If
φi(p) stops then output whatever φi had output.

It is easy to verify that such a U is partial recursive and that it satisfies our
theorem. ♦
So from now on we fix some machine U which satisfies the Invariance Theorem
and we will consider the Kolmogorov complexity of x to be CU (x). We will
write C(x) instead of CU (x) from now on.

We are ready to define a random string.

Definition. A string x is Kolmogorov random if C(x) ≥ |x|.
This definition is not void as there is a Kolmogorov random string of every
length: there are 2n − 1 descriptions of length less than n but there are 2n

strings of length n. Let us consider couple of strings and their Kolmogorov
complexity:

1. 0n has Kolmogorov complexity logn+O(1) as we only need to specify the
integer n and a short program that will reconstruct 0n from n.

2. The sequence of the first n digits of π has Kolmogorov complexity logn+
O(1). The reason is the same as above. (Just download a program for π
from Internet.)

3. There is a Kolmogorov random string x with C(x) ≥ n. See above.

4. What about some string of complexity about
√
n? Sure, there is one.

Consider y ∈ {0, 1}
√

n that is Kolmogorov random. Then x = y0n−√
n

has Kolmogorov complexity about
√
n + O(1). Why? If it would have a
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description much shorter than |y| we could describe y using such descrip-
tion: first produce x and then output only its first

√
|x| bits. On the

other hand, description of y is a good description of x: produce y and
then append |y|2−|y| zeroes. So there are strings of essentially all possible
complexities.

5. Every string of length n has Kolmogorov complexity at most n + O(1).
Why?

6. How many ones and zeroes has a Kolmogorov random string of length n?
About a half, but exactly? There are

(
n

n/2

)
strings which have the same

number of ones and zeroes. Call the set of such strings Sn
n/2. These string

can be easily identified and enumerated by a program. Hence, given n and
i, we can find the i-th string si in Sn

n/2 and output it. Thus, C(si) is at most
the size of a description of i, plus the size of a description of n, plus some
constant for the program described above. |Sn

n/2| <
(

n
n/2

)
< c2n/

√
n for

some constant c, hence to specify i we only need at most n−1/2 logn+log c
bits. n does not really have to be specified as it can be deduced from the
length of the description of i. Thus, all strings si ∈ Sn

n/2 have Kolmogorov

complexity at most n − 1/2 logn + O(1). It turns out that Kolmogorov
random strings of length n have n/2 ± c

√
n zeroes. By Chernoff bound

there are relatively few strings of length n that have the number of ones
farther from n/2 than c

√
n, and by extending the argument above there

are also relatively few strings that have the number of ones closer to n/2
than c

√
n. Since these strings are few and easy to identify, they have small

Kolmogorov complexity. (In fact, the deviation from n/2 in the number of
ones have to be Kolmogorov random by itself.) The following proposition
generalizes this argument.

Proposition. Let A be a recursive (recursively enumerable) set and n be
an integer. Let An = A ∩ {0, 1}n. For all strings x in An it holds, C(x) ≤
log |An| + 2 logn+O(1).

Often the term 2 logn can be omitted as n can be deduced from the length of
the description.

Proof. The proof is straightforward. Since A is recursive (recursively enumer-
able) we can design a program that given i and n prints the i-th string of An in
some enumeration. Hence, all strings in An can be described by giving i, n and
the program for enumerating A. The description of i, n and the program has to
be concatenated into one string in such a way that i, n and the program can be
recovered from the string. One can use the pairing function from the proof of
Theorem 1 for doing that. The factor two in the logarithmic term comes from
there. ♦
It is useful to note that the set of strings that are not Kolmogorov random
is recursively enumerable—given a string x we can run all programs of length
shorter than x in parallel and see if any one of them ever outputs x. If that
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happens we accept x.

This brings us to the fact that the number of strings of length n that are
Kolmogorov random is Kolmogorov random by itself. It is about 2n/c for some
constant c > 1. If that were not the case, we could find all strings of length n
that are not Kolmogorov random, and then print the first one which should be
random. Program for such a computation would only need to know the number
of non-random strings of length n. The number of non-random strings is 2n

minus the number of random strings, i.e., we can easily compute one from the
other one. Since the above program prints out a Kolmogorov random string,
both the numbers of random and non-random strings must require close to n
bits to specify. Hence, they are both about 2n/c.

Proposition. It is uncomputable (undecidable) whether a string is Kol-
mogorov random.

We have seen that non-random strings are recursively enumerable. This propo-
sition thus implies that Kolmogorov random strings are not recursively enu-
merable as otherwise we could decide about a string whether it is Kolmogorov
random or not.

Proof. We give two proofs. The first one is very simple, the second one is
more complex but it shows that deciding Kolmogorov randomness is as hard as
deciding the Halting Problem.

1. Assume we can decide whether a string is Kolmogorov random by some
program P . We can then specify the lexicographically first Kolmogorov random
string of length n using logn + O(1) bits: run program P on all strings of
length n in the lexicographical order until you find a string that is Kolmogorov
random; print out the Kolmogorov random string. This only requires to specify
the program P and n. Hence, no such P can exist.

2. Define the Halting Problem by H = {x; program x halts on the input 0}.
Assume we can decide which strings are Kolmogorov random by some program
P . We can then decide for any string x whether the program x halts on the
input 0 or not as follows: Let n = |x|. Using P decide for each string y of
length 2n whether it is Kolmogorov random or not. For each string y that is
not random find some program py of length less than n that prints it out. Let
ty be the number of steps that it takes to py to output y. Set tx = maxy ty.
Run x on the input 0 for tx steps and if it accepts within tx steps then output
x ∈ H otherwise output x 6∈ H .

The reason why the above program would decide H correctly is that if x ∈ H
but the running time of x on the input 0 is more than tx then the actual
running time of x can be used as an upper bound for the running time of all
py’s. As the running time of x can be specified using n+O(1) bits (namely by
specifying x) we could specify all non-random strings of length 2n using only
n + 2 logn + O(1) bits. (Run all programs of length less than 2n for tx steps
and see what they output.) Hence, we could describe the lexicographically first
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Kolmogorov random string of length 2n using only n+2 logn+O(1) bits. Thus
the running time of x must be smaller than tx.

Since our program could correctly decide the Halting Problem, Kolmogorov
randomness of strings must be undecidable. ♦

Applications

We give here several applications of Kolmogorov complexity.

Graph labelings

We start with an example related to the talk of Arnaud Labourel on graph
labelings. For a (finite) class of graphs G a labeling scheme of label length ` is
a function A : {0, 1}` × {0, 1}` → {0, 1} together with a labeling lG : V (G) →
{0, 1}` of every graph G ∈ G so that for all x, y ∈ V (G), (x, y) ∈ E(G) iff
A(l(x), l(y)) = 1. We have already seen in the talk of Arnaud that the class of
all the trees on n vertices has labeling scheme with labels of length logn+O(1).
The natural question is how large labels are needed to label the class of all the
graphs on n vertices. We claim that this length is n/2 +O(log n).

First, we show that labels of length n/2+logn are sufficient. This is due to Jǐŕı
Sgall. Each vertex is going to be labeled by its vertex number plus a bit-vector
of length n/2 which specifies to which of the next n/2 vertices under a cyclic
ordering of vertices the vertex is connected. Given two vertex labels at least
one of the labels contains the required adjacency information.

Using Kolmogorov complexity we want to show that n/2 bits are needed. First
notice that by exhaustive search we can actually find the best labeling scheme
for graphs on n vertices. In fact we can write a program that will find it. This
program will produce the function A. Each graph G on n vertices can be fully
described by listing labels of its vertices lG(1), lG(2), . . . , lG(n) in the optimal
labeling scheme. Such a description requires `n bits. Hence, every graph can be
described by `n+ 2 logn+O(1) bits, by providing the vertex labels, n and the
program to compute A. On the other hand, a graph on n vertices may contain(
n
2

)
= n(n − 1)/2 different edges. Hence, there are at least 2n2/2−n different

graphs on n vertices and each of them is uniquely described by a description of
length `n+2 logn+O(1). Thus `n+2 logn+O(1) ≥ n2/2−n, i.e., ` ≥ n/2−2,
for n large enough. Thus a labeling scheme for graphs on n vertices requires
labels of length about n/2.

Prime Number Theorem

We provide another application of Kolmogorov complexity to number theory.
Let pi denote the i-th prime number. We will show the following theorem:

Theorem 2. There is a constant c such that for infinitely many i, pi < c · i ·
log2 i.

This theorem is a weak version of the usual Prime Number Theorem that
pi/i ln i→ 1 as i→ ∞.
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Proof. For a positive integer n let 1n̂ be its binary representation with n̂ ∈
{0, 1}∗. Clearly 2|̂n| ≤ n < 2|̂n|+1. Fix a large enough integer x with Kol-
mogorov random x̂. We will make several observations regarding x.

1. x = pey, for some p, e and y, where p is a prime and pe > logx/ log logx.
If all maximal prime-power factors of x were at most logx/ log logx, then x ≤
(logx/ log logx)! < logxlog x/ log log x = x.

2. e = 1. Note, 2e|p̂| · 2|ŷ| < pey = x. Hence,

e|p̂| + |ŷ| ≤ |x̂| ≤ C(x̂).

At the same time, x can be specified by giving e, p, and y. Hence, x̂ can be
given by some encoding of ê, p̂ and ŷ into one binary string so that we would
be able to tell apart all three of them. The pairing function used in the proof of
Theorem 1 is too inefficient for our purposes. We can use the following pairing
function: 〈u, v〉 = lu01uv, where lu is the binary representation of |u| in which
each digit is doubled. Thus | 〈u, v〉 | ≤ |u|+ |v|+2 log |u|+2. Using this pairing
function we can describe ê, p̂ and ŷ to obtain:

C(x̂) ≤ |ê| + |p̂| + |ŷ| + 2 log |ê| + 2 log |p̂| +O(1).

But this implies that e = 1. (If e > 1 is small then p must be large and hence
(e− 1)|p̂| outweighs |ê| + 2 log |ê| + 2 log |p̂| +O(1). If e is large then (e− 1)|p̂|
also outweighs the additional terms.)

¿From 1. and 2. we can deduce that x = py for some prime p > logx/ log logx.
Let i be such that p = pi. Prime pi can be described by giving its index i plus
a short program that will reconstruct pi from i. Hence,

C(x̂) ≤ |̂i| + |ŷ| + 2 log |̂i| +O(1).

Together with the above lower bound on C(x̂) we get

|p̂i| ≤ |̂i| + 2 log |̂i| +O(1).

Using the relationship between n and n̂, we conclude pi ≤ c · i log2 i, for some
constant c independent of i. ¿From the fact that this is true for arbitrarily large
constant x and pi > log x/ log logx we conclude the theorem. ♦
Gödel Incompleteness Theorem

Let T be a sound logical theory over a countable language with recursively
enumerable axioms. If T is rich enough to describe computation of Turing
machines then for some constant cT and integer x, the formula “C(x) ≥ cT ”
is true but unprovable, where x is the constant describing x. (This is a Π1

formula saying that for all programs p smaller than cT and for all computations
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τ , if τ is a computation of p then the output of τ is not x.) If for all x and all
cT such formula were provable whenever it would be true then by enumerating.
all proofs, for given cT we could find the first large x with C(x) ≥ cT . But if
we choose cT with succinct representation (very low Kolmogorov complexity),
then we will be able to produce x of high Kolmogorov complexity merely from
the description of cT , the description of T and some small program. Of course,
that is impossible. So “C(x) ≥ cT ” cannot be provable for any large enough
Kolmogorov non-random cT and any x although it is true for many x and cT .

Universal search procedure

The problem SAT= {ψ; ψ is a satisfiable Boolean formula} is a well known NP-
complete problem. A related problem is SAT-search where given a satisfiable
Boolean formula ψ we want to output an assignment a to ψ such that a satisfies
ψ. The computational complexities of SAT and SAT-search are closely related.
If SAT has an efficient algorithm then SAT-search has one as well: perform
a binary search for a satisfying assignment of ψ by choosing the assignment
bit by bit. On the other hand if SAT-search has an efficient algorithm (and
we know its running time) then SAT has an efficient algorithm as well: run
algorithm for SAT-search on ψ and if it produces an assignment within its
allowed running time and the assignment satisfies ψ then ψ belongs to SAT.
We will present an (almost) optimal algorithm for SAT-search. We will need
the following definition.

Let 〈·, ·〉 be a pairing function. Levin defines the time-bounded Kolmogorov
complexity of a string x relative to a string y by:

Ct(x|y) = min{|p| + log t, p ∈ {0, 1}∗ & U(〈p, y〉) = x in t steps}.

The algorithm for SAT-search works as follows: on input formula ψ, for i =
1, 2, . . . try all strings a with Ct(a|ψ) = i, and see if any of them satisfies ψ. If
yes, output such an a.

We leave implementation details of this algorithm to the interested reader. If p
is the optimal algorithm for SAT-search and t is its running time on formula ψ
then the satisfying assignment for ψ will be found in time about 2|p|t2 by our
algorithm. Hence, our algorithm for SAT-search is at most quadratically slower
than the best algorithm for SAT-search. The only thing that stands in our way
towards $1, 000, 000 is that we do not have a good estimate on the running time
of our SAT-search algorithm.
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Better Group Testing for Consecutive Defectives

Group testing was originally introduced as a potential approach to economical
mass blood testing [1]. However, due to its basic nature, group testing tech-
nique has been applied to many computer science subjects: complexity theory,
computational geometry and learning models among others. It has also been
used in multiaccess communication and information coding, and recently, in
clone library screening.

The general group testing problem refers to the task of distinguishing at most
d defective items within set A of cardinality n. A group testing algorithm is
formed by a sequence of pooling tests. In each test a particular subset, a pool,
of set A is used. The outcome of the test is positive if and only if there is at least
one defective item in the pool, and it is negative otherwise. In our research, it is
assumed that the items in set A are ordered from 1 to n. A number of different
group testing methods have been used in the past. One of them is adaptive

group testing in which the choice of the items forming a pool at some stage of
an algorithm is based on the outcome of previous tests. In nonadaptive group

testing, the content of every single pool is determined prior to the execution of
the algorithm.

In this paper, we study the special group testing such that all defective items
are consecutive. For the adaptive case, we propose a simple algorithm to solve
this problem with at most dlog n

d e+ 2dlog de+ 3 tests, which also improves the
currently best known upper bound dlog(n · d)e + 6 due to Juan and Chang in
[2]. For the nonadaptive case, we give an alternative version of the algorithm
proposed by Colbourn in [3], which improves the currently best known upper
bound from dlog n

d−1e + 2 · d+ 1 to dlog n
d e + d+ 3.
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Presented paper by H. Cohn, R. Kleinberg, B. Szegedy, C. Umans

Group-theoretic Algorithms for Matrix Multiplication

A group-theoretic approach to bounding the exponent in the time complexity
of matrix multiplication is presented. This approach is fundamentally different
from the traditional ones based on the original Strassen’s algorithm (relating
to it in a similar way as the DFT-based multiplication of polynomials relates to
the divide-and-conquer approach), but surprisingly, exactly the same bounds
are obtained based on the same algebraic structures (the resulting algorithms
however are not at all alike). Also, two hypotheses that would imply an 2+o(1)
bound on the exponent will be presented.

Gábor Hegedüs
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On Ramsey numbers

The Ramsey number R(k, `) is the smallest integer n such that in any two-
coloring of the edges of a complete greaph on n vertices Kn by red and blue,
either there is a redKk (i.e. a complete subgraph on k vertices all of whose edges
are colored red) or there is a blue K`. In [6] F. P. Ramsey showed that R(k, `)
is finite for any two integers k and `. P. Erdős in [1] obtained by probabilistic
arguments the following non–constructive lower bound for the diagonal Ramsey
numbers R(k, k):

Theorem 1. If
(
n
k

)
· 21−(k

2) < 1, then R(k, k) > n. Thus R(k, k) > b2k/2c for
all k ≥ 3.

One of the striking applications of the Frankl–Wilson theorem [4] for prime mod-
uli was an explicit construction of graphs of size exp(c log2 k/ log log k) without
homogeneous complete subgraph Kk. These are the largest explicit Ramsey–
graphs known to date. V. Grolmusz in [5] gave an alternative construction
of explicit Ramsey graphs of the same logarithmic order of magnitude. This
construction is easily extandable to the case of several colors.

In this lecture we give a new conjectured lower bound for the diagonal Ramsey
numbers R(k, k).

P. Erdős and G. Szekeres proved the following Theorem in [3].

Theorem. Let k > 0 be a positive integer. There exists a point set H ⊆ R2,
|H| = 2k−2 in general position such that H does not contain a k-point convex
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independent set.

We use this beautiful construction to make plausible the following conjecture.

Conjecture. Let k > 2 be a fix integer. Then R(k, k) > 2k−2.

References
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Snarks

Snarks are a nontrivial cubic graphs whose edges cannot be properly colored by
three colors. Snarks creat an inportant class of graphs, because a lot of prob-
lems of graph theory is possible to reduce on snarks. Classically, ’nontrivial’
of snarks is interpreted, like a condition that the girth of snark is at least five
and cyclical connectivity is at least four. For notions of nontrivial of snarks
are important the operations of reductions and decompositions. Under
reduction of snark K we think of removing of set of vertices, those that K− v
is a graph whose edges cannot be properly colored by three colors. Decom-
position of snark is an operation, which splits a snark on pair of small snarks.
The simplest reductions important to deal with are 2, 3, and 4-reductions and
talking about decomposition are 4 and 5 decomposition. With decomposition is
closely connected 4 and 5 product, we are going to focus on it. We also mention
about 6 decomposition. In general, our thinkings lead to finding of set of prime
number snarks, it means snarks, which are not possible to reduce or split.

31



Marek Sterzik
marek sterzik@volny.cz

Evasiveness of Graph Properties I

In series of three talks we shall introduce the notion of evasiveness and show
some results concerning AKR conjecture.

The first talk we give basic definitions, show some evasiveness results using so-
called adversary argument and group theory. In the second talk we introduce
topological approach, deviced by Kahn et al. In the third talk the topological
approach is used to show evasiveness in some special cases.

For a given boolean function f of n variables we will ask how many variables
we have to know to determine the value of the function. For an algorithm
computing the function f one can construct a decision tree. The nodes of
the tree represent variables, which the algorithm asks for and the leaves are
represent the possible outputs of the algorithm. The algorithm begins in the
root of the tree and in each node we decide if we go to the left or right subtree
(depending on the value of the variable) We will also ask for the minimal depth
of any decision tree for the function f (which is called D(f)).

A boolean function of n variables is evasive, if D(f) is equal to n. In other
words we must ask for all variables that we can be sure, we know the value of
f .

Boolean functions can represent properties of some structures, which are en-
coded in the values of variables. The structures can be specially graphs. Each
variable then corresponds to an edge of the graph and means if the edge is
present. A boolean function f is a graph property, if the value of f is invariant
under graph isomorphism.

A graph property f is monotone, if adding edges preserves the property.

The allready mentioned Aanderaa-Karp-Rosenberg conjecture says, that every
monotone non-trivial graph property is evasive.

A boolean function f of n variables is weekly-symetric, if there exist any transi-
tive permutation group G (a subgroup of Sn) such that the value of f does not
change if we permute the variables in f with any permutation of G. Transitive
group means, that for any i, j ∈ {1, 2, ..., n} there exists a permutation γ such
that γ(i) = j.

One can generalize the AKR conjecture saying every monotone weakly-symetric
function f is evasive.

The main result presented in the talk is to prove that the generalized AKR
conjecture holds for functions with n variables, where n is prime.Note, that
this says nothing about the AKR conjecture, because only the K3 graph has
prime number of edges.
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The proof is divided into three parts. In the first part we show, that if the value

µ(f) =
∑

x∈{0,1}n

f(x)(−1)|x|

is non-zero, then f is evasive (|x| means the number of ones in the vector). In
the second part we will show, that n divides the size of G and following the
Cauchy’s prime theorem there exists an element γ of order n. Since n is prime,
γ also consists of one single cycle. In the third part we use the permutation γ
to show that all boolean vectors x, which are not equal to 0, 1 can be divided
into equivalent classes Vk of size n. Since for two equivalent vectors x, y holds
the equality f(x)(−1)|x| = f(y)(−1)|y|, we can calculate µ(f) as

µ(f) =
∑

k

nf(x)(−1)|x| + f(1)(−1)n

which is also congrunet to ±1 modulo n and cannot be zero. So f is evasive.

Using more sophisticated group-theoretical argument, one can show similar
statement for n being a prime power.

Rudolf Stolař
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Presented paper by David R. Wood

Drawing a Graph in a Hypercube

A d-dimensional hypercube drawing of a graph represents the vertices by dis-
tinct points in 0, 1d, such that the line-segments representing the edges do not
cross. We study lower and upper bounds on the minimum number of dimen-
sions in hypercube drawing of a given graph. This parameter turns out to be
related to Sidon sets and antimagic injections. We show that for n-vertex m-
edge graphs with degeneracy d is the minimum volume of hypercube drawing
at most 2n + 2dm and for n-vertex graphs with bandwidth (resp. pathwidth)
k is the minimum volume of hypercube drawing at most 4k(2n − 1) (resp.
(16 + o(1))kn).

Dana Bartošová
dadik@email.cz

Evasiveness of Graph Properties II

We show the link between monotone boolean functions and topological ob-
jects and their properties, namely simplicial complexes, contractibility and fixed
point property.
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First we define an abstract simplicial complex

Definition 1. A simplicial complex is a finite collection K of sets such that

(1) ∀X ∈ K,Y ⊆ X ⇒ Y ∈ K and

(2) K 6= ∅.
The sets in K are called (abstract) simplices The elements of all sets in K are
called vertices of K.

and corresponding geometric realization

Definition 2. Let V = {p0, . . . , ps} be a finite set of s+1 affinely independent
in a linear normed space. The convex hull σ of V {∑v∈V αvv :

∑
αv = 1, αv ≥

0} is called the (closed) s-simplex. Elements of V are called vertices of S.

Definition 3. The convex hull of an arbitrary subset of vertices of the simplex
σ is called face of σ.

Definition 4. A collection K = {S1, S2, . . . , Sn} is said to form a geometric
simplicial complex if

(1) ∀Si, T a face of Si ⇒ T ∈ K,

(2) ∀Si, Sj ∈ K,Si ∩ Sj 6= ∅ ⇒ Si ∩ Sj is a face of both Si and Sj

It’s legal to mix the abstract simplicial complex with its geometric realization.

A topological property, contractibility, will help us in proves of evasiveness of
graph properties.

Definition 5. A geomteric simplicial complex K is contractible, if there
exists a continuous mapping H : K × [0, 1] → K such that H(x, 0) = x and
H(x, 1) = p0 for some p0 ∈ K.

For a general simplicial complex K it is undecidable whether K is contractible.

In following lemma we prove that if two special subcomplexes of a complex K
are contractible, then K is contractible:

Lemma 1. If for some v ∈ K, K \ v = {X ∈ K : v /∈ X} and K/v = {X ∈
K : v /∈ X,X ∪ {v} ∈ K} are contractible, then K is contractible.

We come to the connection between simplicial complexes and monotone func-
tions:

A monotone boolean function f 6= 1 gives a simplicial complex Kf = {S ⊆
{1, . . . , n} : f(xS) = 0}, where (xS)i is 1 for i ∈ S and 0 otherwise. Naturally
we also get: Kf |xi=0

= {S ⊆ {1, . . . , i− 1, i+ 1, . . . , n} : S ∈ Kf} = Kf \ i and
Kf |xi=1

= {S ⊆ {1, . . . , i− 1, i+ 1, . . . , n} : S ∪ {i ∈ Kf} = kf/i.

Now we can easily prove (by induction) a characterization of monotone non-
evasive function which are not constantly 1:

Lemma 2 (Kahn-Saks-Sturtevant). If f 6= 1 is a non-evasive monotone
function, then Kf is contractible.

From fixed point theory we know that every continuous mapping from a con-
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tractible polyhedron into itself has a fixed point. We are interested in fixed
points of simplicial mappings between two simplicial complexes:

Simplicial mapping. Let K and L be two abstract simplicial complexes.
A simplicial mapping is a mapping f : V (K) → V (L) that maps simplices to
simplices, i.e. f(X) ∈ L whenever X ∈ K.

For our purposes we consider a one-to-one simplicial mapping f : V (K) →
V (K) and we identify all its fixed points as the convex combinations of centers
of gravity of those faces of K that are the cycles of the permutation f .

Eva Ondráčková
efa@atrey.karlin.mff.cuni.cz

Seidel’s switching and H-free graphs

Definition. Let G be a graph. Then the Seidel’s switch of a vertex subset
A ⊆ VG is called S(G,A) and

S(G,A) = (VG, EG 4 {xy : x ∈ A, y ∈ VG \A}).

Definition. We say that two graphs G and H are switching equivalent (de-
noted by G ∼ H) if there is a set A ⊆ VG such that S(G,A) is isomorphic to
H. The set

[G] = {S(G,A) : A ⊆ VG}
is called the switching class of G.

Note that ∼ is an equivalence relation on graphs, and switching classes are the
equivalence classes of ∼ for graphs on a fixed set of vertices VG (not considering
isomorphism), as shown by Seidel [5].

Let P be a graph property. We define the problem S(P ) as follows: determine
whether a given graph G is switching-equivalent to a graph possessing the
property P .

For a fixed graph H , we consider the property “being H-free”. Polynomial-
time decision algorithms are known for S(“being H-free”) if H has at most
three vertices or is isomorphic to a P4. The algorithm for K2 or I2 has been
found by Hage et al. [1], the one for K1,2 or K2 +K1 is due to Kratochv́ıl et
al. [4]. Hayward [2] and independently Hage at al. [1] found an algorithm for P3

or I3; the result is a core of the polynomial-time algorithm for recognizing P3-
structures of graphs. The case of P4 has been solved by Hertz [3] in connection
to perfect switching classes. We show that a polynomial-time algorithm exists
even if H is isomorphic to a claw K1,3.

36



Lemma. Let G be a graph and A ⊆ VG. Then S(G,A) is claw-free if and only
if for every four-vertex induced subgraph H of G that is switching-equivalent to
a claw the following is true:

|V (H) ∩A| is odd if H is a claw,

|V (H) ∩A| is even if H is a not claw.

Theorem. Given a graph G, we can in polynomial time find a set A ⊆ VG

such that S(G,A) is claw-free, or find out that no such A exists.

Problem. Is there a graph H such that the problem S(“being H-free”) is
NP-complete?
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Presented paper by M. Bordewicha, K. T. Huberb, C. Semplec

Identifying phylogenetic trees

(Discrete Mathematics 300 (2005) pages 30 – 43)

For a finite set X , an X-tree T = (T ;φ) is an ordered pair consisting of a
tree T, with vertex set V say, and a map φ : X → V with the property that,
for all v ∈ V with degree at most two, v ∈ φ(X). An X-tree is also called a
semi-labelled tree.

A character on X is a function χ from a non-empty subset X ′ of X into a set C
of character states. If |C| = 2, then χ is a two-state character. Let π(χ) denote
the partition of X ′ corresponding to {χ−1(α) : α ∈ C}.
Let χ be a character on X and let T = (T ;φ) be an X-tree. We say that T
displays φ if there is a subset E of edges of T such that, for all A,B ∈ π(χ) with
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A 6= B, there exists two connected components of the graph obtained from T
by deleting the edges in E with χ(A) being a subset of the vertex set of one
component and χ(B) being a subset of the vertex set of the other component.
More generally, T displays a collection C of characters on X if T displays each
character in C, in which case C is compatible. For a compatible collection C of
characters on X , we say that C infers a character χ if every X-tree that displays
C also displays χ.

Associated with each edge e of an X-tree T = (T ;φ) is an X-split; that is, a
bipartition of X into the label sets of the two connected components of T −e =
(T − e;φ). An X-tree T ′ is a refinement of T if every X-split of T is an X-split
of T ′. We say that C identifies an X-tree T if T displays C and every X-tree T ′

that displays C is a refinement of T .

Definition. Let C be a collection of characters on X and let T = (T ;φ)
be an X-tree. Let X ′, X ′ ∈ X. The set of vertices in the minimal subtree
of T that connects the vertices of φ(X) is denoted by T (X). The partition
intersection graph of C, denoted int(C), is the graph that has vertex set V (C) =⋃

χ∈C{(χ,A) : A ∈ π(X)} and an edge joining (χ1, A) and (χ2, B) if A ∩ B is
non-empty.

Definition. Let T = (T ;φ) be an X-tree and let e = {u1, u2} be an edge of
T . Then e is strongly distinguished by a character χ on X, if there exist A1 and
A2 in π(χ) such that, for each i ∈ {1, 2}, the following hold:

(i) φ(Ai) is a subset of the vertex set of the component of T − e containing ui

(ii) the vertex set of each component of T − ui , except for the one containing
the other end vertex of e, contains an element of φ(Ai)

(iii) φ−1(ui) is a subset of Ai

We say T is strongly distinguished by a collection C of characters if every edge
of T is strongly distinguished by some character in C.

Definition. For a collection C of characters on X, we let G(C) denote the set
of graphs G(C) = {G : there is an X-tree T displaying C with G = int(C, T )}.
A useful partial order on G(C) is obtained by setting, for all G1, G2 ∈ G(C),
G1 ≤ G2 if the edge set of G1 is a subset of the edge set of G2.

Theorem. Let C be a collection of characters on X. Then C identifies an
X-tree if and only if the following conditions hold:

(i) there is an X-tree that displays C and, for every edge e of this tree, there
is a character on X inferred by C that strongly distinguishes e; and

(ii) there is a unique maximal element in G(C).

Moreover, if C identifies an X-tree T , then T satisfies the properties in (i) and
int(C, T ) is the unique maximal element of G(C).
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Presented paper by Terence Tao and Van Vu

Determinant of Random ±1 Matrices

(http://arxiv.org/abs/math/0411095)

Let Mn denote a random n × n matrix with entries +1 and −1. Random
means that each entry of Mn is +1 or −1 with the probability 1/2, and is
independent on other entries. We will focus on the study of the determinant
of Mn, particularly on the expected value of | det(Mn)|, and on the probability
that the matrix Mn is singular.

It is not difficult to see that 0 ≤ | det(Mn)| ≤ (
√
n)n = nn/2. The lower bound

holds for singular matrices, and the upper bound holds for so called Hadamard
matrices (i.e. ±1 matrices with orthogonal rows). There is a conjecture that
the typical value of | det(Mn)| should be of the order of

√
n! = e−n+o(n)nn/2.

However, even proving that Mn is typically regular (i.e. with at least constant
probabilty) is a non-trivial task. This was first proved by Komlós in 1967.

The problem of determining the asymptotic behavior of Prob(det(Mn)) = 0
precisely is a notorious open problem. Since a matrix Mn with two identical
or opposite rows (or columns) is necessarily singular, it is easy to see that
Prob(det(Mn) = 0) ≥ (1+o(1))n221−n. It has often been conjectured that this
is the dominant source of singularity. Prior to the presented paper, the best
result is due to Kahn, Komlós, and Szemerédi (1995): Prob(det(Mn) = 0) =
(0.999 + o(1))n. In the presented paper the result is improved to the following:

Prob(det(Mn) = 0) = (0.938 + o(1))n.

Let us turn back to the determinants. It is an easy observation that det(Mn)
is divisible by 2n−1. Thus the Komlós result implies that Prob(| det(Mn)| ≥
2n−1) = 1 − o(1). Surprisingly, this is the best estimate of previous to the
presented paper. This result is much improved to the following:

Prob(| det(Mn)| ≥
√
n! · exp(−o(n1/2+ε)) = 1 − o(1) for any ε > 0.

Martin Pergel
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Presented paper by Carsten Thomassen

Plane Cubic Graphs with Prescribed Face Areas

(Combinatorics, Probability and Computing 1 (1992) p. 371 – 381)

If G is a plane, cubic graph, then G has a drawing such that each edge is
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a straight line segment and each bounded face has any prescribed area. The
special case where all areas are the same proves a conjecture of G. Ringel, who
gave an example of a plane triangulation that cannot be drawn in this way.

Basic definitions: For a plane graph G a redrawing of G is a plane graph G′

such that each edge of G′ is a straight line segment and such that G′ is the
image of G under a homeomorphism of the euclidean plane. If {Gn}∞n=1 is a
sequence of redrawings of G such that for any x, vertex of G, the sequence xn

of corresponding vertices converge to a point x′, then the union of straight line
segments x′y′ (where {x, y} is an edge of G) is called the limit of Gn.

H is a modification of G if it is a redrawing of G that has the same number of
faces.

If H is a modification of G, then, for each positive real number ε > 0 there
exists a redrawing G′ of G, such that for each vertex x of G the vertex x′ in G′

corresponding to x has Euclidean distance < ε. Such a redrawing will be called
an ε-replacement of H .

Note: Our definitions require the modification of a graph to have the same
number of faces, but for larger face (e. g. hexagon) some part of this face may
collapse (e. g. to a four-cycle with one edge sticked to one its vertex). Under
these assumptions we prove the following theorem.

Main result: Let G be any cubic plane graph. Then there exists a modification
H of G such that every face is bounded by a triangle of any prescribed area.
Moreover, for every ε > 0 there exists an ε-replacement of H that is a redrawing
of G and in which every face has the prescribed area.

Jan Hladký
hladk@seznam.cz

Evasiveness of Graph Properties III

We exhibit evasiveness of some families of monotone functions using topological
approach, which was introduced by Kahn et al.

Proofs of all the results presented in the talk are based on a crucial lemma about
contractibility of a simplicial complex associated with a monotone non-evasive
function. The proof of the lemma was shown in a previous talk given by Dana
Bartošová.

Lemma 1. Let f : {0, 1}n → {0, 1} be a monotone non-evasive function.
Then the associated complex Kf is contractible.

By a bipartite property we mean a function whose input variables are indicator
variables of the edges of Km,n, such that the values of the function are invariant
under relabeling the vertices in each of the the parts of Km,n.
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In the talk we give complete proofs of the following two theorems.

Theorem 2. Let f : {0, 1}n → {0, 1} be a nontrivial monotone property
which is invariant under a cyclic permutation of the input variables. Then f is
evasive.

Theorem 3. Let f : {0, 1}mn → {0, 1} be a nontrivial monotone bipartite
function. Then f is evasive.

Both proofs are based on Lemma 1. We assume that we have a non-evasive
function satisfying the assumptions. We pick a permutation ψ of the inputs.
Then ψ is a simplicial mapping on the vertices of Kf . Since Kf is conctractible,
the geometric extension of ψ has, by Lefschetz theorem, a fixed point. This fact
leads directly to contradiction in the case of Theorem 2. In the case of Theorem
3, one gets a contradiction computing Euler characteristics of the corresponding
complex H of the fixed points of ψ. On one hand, the Euler characteristics of H
should be, by Hopf Index Formula, −1, on the other hand, it is easy to describe
H explicitly and to compute that the Euler characteristics must be an even
number.

We show a sketch of the proof of AKR-conjecture for graphs with number of
vertices being a prime power.

Theorem 4. Let f be a nontrivial monotone graph property on a graph with
prime power number of vertices. Then f is evasive.

Using Theorem 3 and Theorem 4 we prove that AKR-conjecture is true up to
a factor.

Theorem 5. There is a constant c > 0, such that every nontrivial monotone
graph property f on a graph in n vertices, the decision complexity of f is at
least D(f) > c

(
n
2

)
.

In the end of the talk we discuss briefly latest results about evasiveness of
subgraph containment which are due to Chakrabarti, Khot and Shi.
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Presented paper by Rowan Davies, Gordon F. Royle

Tabu Search and Football Pool Problem

(Discrete Applied Mathematics 74 (1997) p217 – 228)

Tabu search is a general purpose aproximation algorithm for finding best con-
figuration from all possible configurations. The solved problem may be written
like:

Minimize c(x) where x ∈ X and X is set of all possible configurations.

Tabu search requires some neighbour structure on X . The algorithm starts
in any (possibly random) configuration and move from one configuration to
neighbour configuration with obvious goal finding the optimal solution.

Simple greedy algorithm check all neighbours and choose the best neighbour.
Unfortunatelly this way of choosig will stop in first local minimum instead of
global minimum. Any neighborhood search based algorith must solve case of
local minimas somehow.

Tabu search remebers a list of few last configurations and new moves may be
done only to configurations not on list. Those configurations are tabu. The
name of algorith comes form this ”tabu list”.

Code for tabu search may look this way:

p := some magic constant;

x := some configuration;

list := empty;

while (we want to continue)

{
y := neighbour of x with minimal c(x) that isn’t in list;

add(list, y);

if (size(list) > p) remove oldest(list);

x := y;

}
It may be also a good idea to remember best reached point in whole algorithm.
Because we may find the optimal solution but continue to other configurations.

Definition 1. For graph G(V,E) and x ∈ V we define N(x) = {x}∪{y ∈ V :
(x, y) ∈ E}. For X ⊂ V we define N(X) =

⋃
x∈X N(x).

Definition 2. For graph G(V,E) any D ⊆ V is called dominating set if
V = N(D)

In order to use tabu search to find dominating set of graph G we need to define
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set of configuration S for tabu search and c(x) for all x ∈ S. We put S = 2V

and ∀x ∈ S : c(x) = |x|+ |V N(x)|. We say that x, y ∈ S are neighbours if they
differ only one vertex. WLOG |x| = |y| − 1 and x ⊂ y.

David Hartman
hartman@kam.mff.cuni.cz

Presented paper by B. Martin and F. Madelaine

Towards a trichotomy for quantified H-coloring.
(Lecture Notes in Computer Science, July. Swansea, CiE 2006 (preprint))

The convexity of constraint satisfaction problem is still open question. It is
mostly represented by dichotomy conjecture, that states that every constrant
satisfaction problem is either tractable or NP. In this paper the authors con-
centrate on the restriction of the quantified constraint satisfaction problem to
graphs and investigate its convexity. This restriction helps them to use graphic
properties rather than algebraic method as usual. The definition of quantified
H-coloring problem is motivated in H-coloring problem established and proofed
by Hell and Nešetřil. The H-coloring problem is a generalization of graph col-
oring using homomorphisms, where homomorphism is a vertex mapping from
one graph to another that preserving edges. Than the H-coloring problem can
be defined as: For a given graph H if you take a graph G as an input, you
accept it if and only if there is a homomorphism from G to H .

The quantified H-coloring problem is introduced by definition of a two player
game. Let G be the n-paritioned graph consisting of graphs G and a parti-
tion {U1, X2, U3, X4, . . . , U2n+1, X2n+2} of V (G). The (G, H)-game is a two
player game where opponent plays universal partitions Ui and the proponent
plays existential partitions Xi. The partitions are alternate in ascendenting
order, until all partitions have been played. For each vertex in partition U2i+1

opponent chooses a vertex in H (define function fU2i+1
: U2i+1 → V (H))

and for each vertex in X2i proponent chooses a vertex in H (define func-
tion fX2i

: X2i → V (H)). Proponent wins if, and only if, the function
f = fU1

∪ fX2
∪ . . . fX2n+2

is a homomorphism from G to H . This homo-
morphism is called as alternating homomorphism from n-paritioned graph G to

H and write it as G
alt→H . The quantified H-coloring problem is than defined

as the decision problem that should decide whether for the input partitioned

graph (G) holds G
alt→H .

Hell and Nešetřil proofed that the class ofH-coloring problems has a dichotomy.
The problem from this class is tractable ifH is bipartite and NP otherwise. This
conclusion motivates authors to find a trichotomy in the class of quantified H-
coloring problems. This trichotomy is expressed by final theorem of the paper.
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Theorem. Let H be a graph with at most one cycle. The quantified H-coloring
problem exhibiths a trichotomy.

I f H is bipartite then the quantified H-coloring problem is tractable.

I f H is not bipartite and not conected then the quantified H-coloring problem
is NP -complete.

I f H is not bipartite connected then the quantified H-coloring problem is
PSpace-complete.

Jan Hubička
hubicka@kam.mff.cuni.cz

Presented paper by S. Szeider

Homomorphisms of conjunctive normal forms

(Discrete Applied Mathematics 130 (2003) 351-365)

Consider propositional formulas in conjunctive normal form represented as set
of clauses and clauses represented as sets of literals (literal is either variable v
or negation of variable v).

Let H and F be formulas and ϕ map from the literals of H to the literals
of F . We call ϕ homomorphism if it preserves complements and clauses, i.e.
ϕ(l) = ϕ(l) for every literal l of H , and {ϕ(l); l ∈ C} ∈ F for every clause C of
H .

Homomorphisms preserve unsatisfiability (i.e. if there is a homomorphism H
to F , then unsatisfiability of H implies unsatisfiability of F ).

Similarly to graph homomorphisms, the homomorphisms on formulas imply an
quasiorder and each equivalency class has up to isomorphism unique represen-
tative called core. The core of formula can be used as reduced form of original
formula. Deciding whether formula is an core is however NP-complete.

A notion of proof by homomorphism can be defined in following manner. As-
sume that H is an unsatisfiable formula and, based on the specific nature of H ,
its unsatisfiability can be established in polynomial time. Given different for-
mula F and homomorphism from H to F it follows that F is unsatisfiable too
and the property “being homomorphism” can be verified in polynomial time.
The triple (H,ϕ, F ) can be considered as proof on the unsatisfiability of F .

We will consider sets Γ of unsatisfiable formulas such that for every unsatisfiable
formula F , there exists H ∈ Γ and homomorphism ϕ from H to F (i. e. Γ is
homomorphically complete); Γ can be recognized in polynomial time (i. e., Γ is
tractable).

Given such an Γ, then ΠΓ = {(H,ϕ, F );H ∈ Γ and ϕ is homomorphism from
H to F} is proof system.
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Let MU(k) denote the set of minimally unsatisfiable formulas (i.e. unsatisfiable
formulas where removing single clause makes it satisfiable) for which the umber
of clauses exceeds the number of variables exactly by k. While it is computionaly
hard problem to recognize minimally unsatisfiable formulas, formulas in MU(k)
can be recognized in polynomial time for every fixed k ≥ 1.

Main result of the paper is the homomorphic completeness of MU(1).

Given two proof systems Π and Π′, we say that Π′ p-simulates Π if every proof
x ∈ Π can be transformed into proof x′ ∈ Π′ in polynomial time such that x
and x′ prove the same formula. If Π and Π′ p-simulate each other, then we
say that they are p-equivalent The efficiency of (propositional) proof system is
closely related to the NP=co-NP question; this is also the main motivation for
studying the relative complexity of proof systems.

It is shown that every proof in (H,ϕ, F ) ∈ ΠMU(1) can be transformed into a
tree resolution proof of F in polynomial time, so the ΠMU(1) and tree resolution
proofs are p-equivalent. For fixed k ≥ 1, the set MU(≤ k) of all minimally
unsatisfiable formulas for which the number of clauses exceeds the number of
variables by at most k is homomorphically complete. Since MU(1) ⊆ MU(≤
k) it is conceivable that for ΠMU(≤k) is stronger than ΠMU(1). It is shown,
however, that ΠMU(≤k) and ΠMU(1) are p-equivalent.

Radovan Šesták
radofan@gmail.com

Presented paper by Noga Alon, Vera Asodi

Tracing a single user

Let g(n, r) be the maximum possible cardinality of a family F of subsets of
{1, 2, ..., n}so that given a union of at most r members of F , one can identify
at least one of these members. Study of this function is motivated by questions
in molecular biology and in this paper we show that g(n, r) = 2Θ( n

r
). The

upper bound has been solved by Csuros and Ruszinko. Probabilistic proof of
the lower bound is given and later derandomised algorithm, based on the proof,
is presented for explicit construction of family of subsets of size 2

n
20r

Definition 1. Let [n] = {1, 2, ..., n}, and F ⊆ 2[n]be a family of subsets of [n].
Such set F is called r-single-user tracing superimposed (r-SUT) if for all choices
of F1, .., Fk ⊆ F with 1 ≤ |F | ≤ r,

⋃
A∈F1

A =
⋃

A∈F2
A = ... =

⋃
A∈Fk

A =⇒
⋂k

i=1 Fi 6= ∅.
Theorem 1. For any r ≥ 2and n ≥ 20r, there exists an r-SUT family of
subsets of [n] of size at least 2

n
20r .
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Fix r ≥ 2and n ≥ 20r. Let m = 2n/20r, and let p = 1/r. Choose a family
F = {F1, ..., Fk}of sebsets of [n] at random, where the subsets Fiare chosen
independently as follows. Every x ∈ [n] is chosen to be in Fiindependently
with probability p. We next show that with positive probability the family F
is r-SUT. Thus, wer have to show that, with positive probability, for all choices
of F1, ..., Fk ⊆ F such that 1 ≤ |Fi| ≤ r for all 1 ≤ i ≤ k and

⋂k
i=1 Fi = ∅,

the unions
⋃

A∈Fi
A for 1 ≤ i ≤ k are not equal. We consider two different

casees, according to the size of
⋃k

i=1 Fi. Proposition 2 deals with the case

|⋃k
i=1 Fi| < 2r, Propositions 3 with |⋃k

i=1 Fi| ≥ 2r, and in Propositioin 4 we
combine the above to complete the proof of Theorem 1.

Proposition 2. The following holds with probability greater than 1
2 . For all

s < 2r, and for all distinct A1, A2, ..., As ∈ F , there exists an element x ∈ [n]
that belongs to exactly one of the sets Ai, 1 ≤ i ≤ s.

Proposition 3. The following holds with probability greater than 1
2 . For all

t ≤ r, and for all distinct A1, ..., Ar, B1, ..., Bl ∈ F ,
⋃r

i=1 Ai 6⊆
⋃l

i=1 Bi.

Proposition 4. Any family that satisfies the properties in Propositions 2 and
3 is r-SUT. Therefore, with positive probability, the random family F is r-SUT,

and hence log g(n,r)
n ≥ 1

20r .

Explicit Construction takes timemO(r), is based on derandomisation of previous
proofs and combines the method of conditional expectations with the known
constructions of small sample spaces supporting 2r-wise independent random
variables.

David Howard
dmh@math.gatech.edu

Strange Combinatorial Connections

This talk is based on ideas from two papers. The first is by S. Felsner and
W. T. Trotter (Colorings of Diagrams of Interval Orders and α-sequences of
Sets, Discrete Mathematics, 144 (1995), 23-31) and the second is by W. T.
Trotter (New Perspectives on Interval Orders and Interval Graphs, Surveys in
Combinatorics, R. A. Bailey, ed., London Mathematical Society Lecture Note
Series 241 (1997), 237–286).

I call a poset P = (X,P ) an interval order if there there exists a function I
mapping each x ∈ X to a closed interval I(x) = [ax, bx] of R, with the property
that for all x, y ∈ X , x < y in P iff bx < ay in R. Let t be a positive integer
and S = (S0, S1, . . . , Sh) be a sequence of sets. S is an α-sequence if S1 6⊆ S0

and Sj − (Si ∪ Si−1) 6= ∅, for all i, j with 1 ≤ i < j ≤ h. Let t be a positive
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integer and let n = 2t. A list (A1, A2, . . . , At) of the subsets of {1, 2, . . . , t} is
called a monotone hamiltonian path in the t-cube if A1 = ∅, and for 1 < i < t
and S ⊆ Ai, then S = Aj for some j ∈ {1, 2, ..., i+ 1}.
This talk examines three different questions. First, for each t ≥ 1, what is the
largest integer h = C(t) so that whenever P is an interval order of height h,
the chromatic number of the diagram of P is at most t? Second, what is the
longest α-sequence where each set in the sequence is a subset of {1, 2, ..., t}?
Finally, do monotone hamiltonian paths always exist in the t-cube? Though
none of these answers are known, it turns out all three are related. The first two
questions have the same answer, and it can be shown that C(t) ≤ 2t−1 +b t−1

2 c.
The final question is true if and only if this inequality is an equality. While I
will not prove here that these questions are equivalent, I will present concepts
fundamental to the proof, as well as motivation for why these hamiltonian paths
might or might not exist.

Paul Raff
praff@math.rutgers.edu

The Firefighter Problem in the Two-Dimensional Grid

Consider the following dynamic graph theory problem: a graph G, a finite
subset S ⊆ G and a function f : N → N are given. The set S is thought
of as vertices that are initially on fire. Each vertex on the graph has three
possible attributes: on fire, protected, or neither. Once a vertex is on fire or
protected it stays that was permanently. A game is played where at each turn
the player is given f(i) firefighters to be placed at vertices that are neither on
fire nor defended. Once a fighter is placed on a vertex, that vertex is defended.
Afterwards, the fire spreads out one level, meaning the vertices

{v ∈ G | v is adjacent to a vertex on fire and is not defended }
become on fire. There are two ways the game ends:

Each vertex of G eventually becomes either on fire or protected.

There are unprotected vertices of G which never become on fire. If the
second condition is attained, then we say that “f contains the fire in G
starting at S”. The general question of whether a fire can be contained
has been shown to be NP-complete.

In this talk, I will focus the problem to where G is the two-dimensional infinite
grid, meaning

V (G) = Z
2

E(G) = {{(x, y), (x′, y′)} | |x− x′| + |y − y′| = 1}
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Previously, it was known that the function f defined by f(t) = 1 for all t cannot
contain the fire, whereas the function f defined by f(t) = 2 for all t can contain
the fire. I will discuss improvements made by myself and Kah Loon Ng from
DIMACS which culminates in the following (which will be made more specific):

Theorem. If the “average” value of f is more than 1.5, then f contains the
first in G starting at any S.

Petr Golovach
pagolovach@yahoo.com

Generalized domination in chordal graphs

Let G be a graph with vertex set V (G) and edge set E(G). The open neigh-
borhood of a vertex is denoted by N(u) = {v: (u, v) ∈ E(G)}.
Let σ, ρ be a pair of sets of nonnegative integers. A set of vertices of a graph
G is called a (σ, ρ)-dominating if for every vertex v ∈ S |S ∩N(v)| ∈ σ, and for
every v /∈ S |S ∩N(v)| ∈ ρ.

The concept of (σ, ρ)-dominating set was introduced by J.A.Telle (see [2, 3]) as
generalization of some known notions (see Table 1 for examples).

σ ρ (σ, ρ)-dominating set

N0 N dominating set
{0} N0 independent set
{0} {1} 1-perfect code
{0} {0, 1} strong stable set
{0} N independent dominating set
{1} {1} total perfect dominating set

Table 1. Examples of (σ, ρ)-dominating sets, N is the set of positive integers,

N0 is the set of nonnegative integers.

We are interested in the complexity of the problem of existence of (σ, ρ)-
dominating set, which will be denoted ∃(σ, ρ)-domination problem.

It can be easily seen that if 0 ∈ ρ then ∃(σ, ρ)-domination problem has trivial
solution S = ∅. So we suppose that 0 /∈ ρ. Also we suppose that σ and ρ are
fixed finite sets, and complexity of ∃(σ, ρ)-domination problem is investigated
for chordal graphs.

Theorem 1. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. If there is
a chordal graph with at least two different (σ, ρ)-dominating sets then ∃(σ, ρ)-
domination problem is NP-complete for chordal graphs.
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Theorem 2. Let σ, ρ be finite sets of nonnegative integers, 0 /∈ ρ. If for every
chordal graph there is no more than one (σ, ρ)-dominating set then ∃(σ, ρ)-
domination problem can be solved polynomially for chordal graphs.

These two theorems give motivation for the following problem: for what finite
sets of nonnegative integers σ and ρ, 0 /∈ ρ, every chordal graph contains no
more than one (σ, ρ)-dominating set?

Main intention of our talk is to propose for consideration this problem.

At present there are only few results. In particular there are following bounds
(see [1]).

Let p = maxσ, and q = min ρ.

Proposition 1. If q ≤ p + 1 then there is a chordal graph with at least two
(σ, ρ)-dominating sets.

Proposition 2. If 2p+2 ≤ q then every chordal graph contains no more than
one (σ, ρ)-dominating set.

Both bounds are tight. If σ = {p} and p + 2 ≤ q then every chordal graph
contains no more than one (σ, ρ)-dominating set. And if σ contains two con-
secutive integers i, i+ 1 and q ≤ 2p + 1 then there is a chordal graph with at
least two (σ, ρ)-dominating sets.

Also the problem investigated for special case σ = {0, p}.

Proposition 3. If σ = {0, p}, p > 0 then every chordal graph has no more
than one {σ, ρ}-dominating set if and only if p+ 3 ≤ q.

It would be interesting to receive complete solution even for some special cases.
For example for σ = {p1, p2}.
Also there is a finite procedure which tests existence of chordal graphs with at
least two {σ, ρ}-dominating sets for given finite sets σ and ρ, 0 /∈ ρ. Unfor-
tunately this procedure is very uneffective. So there is another question: can
existence of chordal graphs with at least two {σ, ρ}-dominating sets be tested by
effective algorithm?
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Presented paper by S. Gerke, D. Schlatter, A. Steger, and A. Taraz

The random planar graph process

A constrained random graph process (Pn,t)
N
t=0 is a random graph process which

is equipped with an additional acceptance test: after we have randomly chosen
the edge to be inserted, we check whether the present graph together with
this edge preserves a certain (usually structural) property. If so, we take it,
otherwise we reject it (and never look at it again).

In this talk, our requirement is planarity, and we are mainly interested in the
evolution of this constrained random process. It will become crucial to under-
stand how the following two different parametrizations of the process are re-
lated. The first one, Pn,t0 , denotes the random planar graph obtained after t0
edges have been considered. Pn,m=m0

, on the other hand, describes the random
planar graph after m0 edges have been accepted. As edges between vertices in
different components are always accepted, it is obvious that Tn,t ⊆ Pn,t ⊆ Gn,t

for all t = 0, . . . , N . Thus, after the connectivity threshold for Gn,t —which lies
at t = n logn/2— Pn,t must have at least n−1 edges with high probability. The
following theorem, which states that we have to consider Ω(n2) edges before
(1 + ε)n edges have been accepted, may thus seem somewhat surprising.

Theorem. For every ε > 0, there exists δ > 0 such that

Pr[e
(
Pn,δn2

)
≥ (1 + ε)n] < e−n.

The uniform model of random planar graphs has found considerable attention
in the literature over the past decade [1][2][3][4][5][6][8][9]. Recently, Giménez
and Noy [7] gave rather precise asymptotic expressions for both the number of
simple labelled planar graphs with n vertices and dn edges, and the number of
those which are connected. These results yield an analytic expression for the
probability that a uniform random planar graph with dn edges is connected. As
it turns out, this probability is bounded away from 0 and 1 for every 1 < d < 3.
From the first theorem above, we can immediately infer that this is not true for
Pn,m=dn.

Theorem. For every 1 < d < 3,

Pr[Pn,m=dn is connected ] −→ 1 as n −→ ∞.

Gerke, McDiarmid, Steger, and Weißl [4] have shown the following result about
the containment of a fixed planar graph H in a graph P̂n,m=dn which is chosen
uniformly at random from the class of all simple labelled planar graphs with n
vertices and dn edges:

Pr[P̂n,m=dn contains at most αn pairwise vertex-disjoint copies of H ] < e−αn,
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for every 1 < d < 3 and a positive constant α = α(H, d).

In this respect, the two models do agree: the following analogue is our second
main result.

Theorem. Let H be a planar graph. For every 1 < d < 3, there exists
α = α(H, d) > 0 such that

Pr[Pn,m=dn has at most αn pairwise vertex-disjoint copies of H ] < e−αn.
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[6] O. Giménez and M. Noy, The number of planar graphs and properties of ran-
dom planar graphs, Proceedings of the International Conference on the Analysis
of Algorithms (AofA’05), 147-156, 2005.
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Eva Ondráčková . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Martin Pergel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Paul Raff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Dirk Schlatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Marek Sterzik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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