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bound χρ(Z2) ≥ 9 of Goddard et al. [5]. Moreover, it is shown that
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1 Introduction

The concept of packing coloring comes from the area of frequency planning
in wireless networks. This model emphasizes the fact that some frequencies
are used more sparely than the others.

In graph terms, we ask for a partition of the vertex set of a graph G into
disjoint classes X1, . . . , Xk (representing frequency usage) according to the
following constraints. Each color class Xi should be an i-packing, that is,
a set of vertices with the property that any distinct pair u, v ∈ Xi satisfies
dist(u, v) > i. Here dist(u, v) denotes the usual shortest path distance
between u and v. Such partition is called a packing k-coloring, even though
it is allowed that some sets Xi may be empty. The smallest integer k for
which there exists a packing k-coloring of G is called the packing chromatic
number of G and it is denoted by χρ(G). This concept was introduced by
Goddard et al. [5] under the name broadcast chromatic number. The term
packing chromatic number was later (even if the corresponding paper was
published earlier) proposed by Brešar et al. [1].

Sloper [7] followed with a closely related concept, the eccentric coloring.
An eccentric coloring of a graph is a packing coloring in which a vertex v is
colored with a color not larger than the eccentricity of v. His results among
others imply that the infinite 3-regular tree has packing chromatic number
7.

The determination of the packing chromatic number is quite difficult.
In particular, it is NP-complete for general graphs [5]. In addition, in the
same paper it was also proved that it is NP-complete to decide whether
χρ(G) ≤ 4. But things are much worse: Fiala and Golovach showed that
determining χρ(G) is one of few inherent problems that are NP-complete
on trees [2].

The following interesting phenomena was the starting point for our in-
vestigations. The packing chromatic number of the infinite square lattice
Z2 is finite, more precisely, Goddard et al. [5] showed that it lies between
9 and 23. In Theorem 3.11 we improve the lower bound to 10. On the
other hand, Finbow and Rall [4] proved that the packing chromatic number
of the infinite cubic lattice Z3 is unbounded. So where does a step from a
finite number to the infinity occur? In Section 3 we prove that the pack-
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ing chromatic number is unbounded already on two layers of the square
lattice, that is, χρ(P2 � Z2) = ∞. On the other hand, in the next section
we prove that χρ(G � Z) < ∞ for any finite graph G, hence in particular
χρ(Pn �Pm � Z) < ∞ for arbitrary m and n. In fact, we prove a slightly
more general theorem: for the strong product of the complete graph on
n ≥ 1 vertices Kn with the two-way infinite path we have χρ(Kn �Z) < 4n.

Just like square and cubic lattices, the hexagonal lattice H is important
in different applications, for instance in the field of frequency assignment.
Brešar et al. [1] showed that 6 ≤ χρ(H) ≤ 8 and asserted (without a proof)
that the actual lower bound is 7. This was later indeed verified, using a
computer, by Vesel [8]. In Section 4 we exhibit a tiling of the hexagonal
lattice using 7 colors; see Theorem 4.1. As a consequence χρ(H) = 7. We
also investigate the situation of the hexagonal lattice with more hexagonal
layers and we prove that χρ(Pm �H) = ∞ for every m ≥ 6.

2 Cartesian products with a single infinite path

The Cartesian product G �H of graphs G and H is the graph with vertex
set V (G)×V (H) where vertices (g, h) and (g′, h′) being adjacent whenever
gg′ ∈ E(G) and h = h′, or g = g′ and hh′ ∈ E(H). The Cartesian
product operation is associative and commutative [6]. The subgraph of
G �H induced by {g}×V (H) is isomorphic to H and it is called an H-layer.
Similarly one defines the G-layer for a vertex h of H. The strong product
G�H of graphs G and H can be described as the graph obtained from G �H
by adding edges between (g, h) and (g′, h′) provided that gg′ ∈ E(G) and
hh′ ∈ E(H). Layers of the strong product are defined analogously as the
layers of the Cartesian product.

It will be convenient to present our results by the Cartesian product
with the 2-way infinite path Z. In this notation the square lattice Z2 can
be viewed as the product Z � Z and the cubic lattice Z3 as Z � Z � Z.

We first prove that the packing chromatic number of the strong product
of the complete graph Kn with the infinite path is asymptotically exponen-
tial in n.

Theorem 2.1. For any n ≥ 1 it holds that χρ(Kn � Z) < 4n and χρ(Kn �
Z) = Ω(en).

Proof. We first observe that every single infinite path Z allows a packing
coloring using colors from k up to 4k−1, for any k ≥ 1: we use the coloring
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pattern (k, k+1, k+2, . . . , 2k−1) repeatedly on even vertices and the pattern
(2k, 2k + 1, 2k + 2, . . . , 4k − 1) on odd vertices. The resulting pattern is

(k, 2k, k + 1, 2k + 1, ..., 2k− 1, 3k− 1, k, 3k, ..., 2k− 2, 4k− 2, 2k− 1, 4k− 1) .

To prove the theorem consider Z-layers of Kn � Z; see Figure 1. We color
the i-th layer Z with the above pattern by using colors from the interval
[4i−1, 4i−1]. This particular packing coloring of Kn � Z needs 4n−1 colors
in total.

Figure 1: Decomposition of Kn � Z into Z-layers from Theorem 2.1 is on
the left. The infinite strip of width two of the triangular lattice and its
decomposition into Z-layers is on the right.

To show the lower bound we proceed as follows. Let N be a (large)
positive integer and consider the subgraph GN = Kn � PN of Kn � Z.
Suppose f is a packing coloring of Kn � Z using at most c colors. Then for
any i ≥ 1, at most

⌈
N

i+1

⌉
vertices of GN can have color i. Since GN has

n N vertices we infer that⌈
N

2

⌉
+

⌈
N

3

⌉
+

⌈
N

4

⌉
+ · · ·+

⌈
N

c + 1

⌉
≥ n N .

Since for any k ≥ 1, dN/ke
N ≤ 1

k + 1
N , it follows that

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
c + 1

≥ n + 1− c

N
. (1)

The sum from inequality (1) is the (c + 1)’th harmonic number Hc+1.
It is well-known that Hc grows about as fast as the natural logarithm of c.
Therefore, since c is fixed and N can be arbitrarily large, we obtain that
ln c must be of order n and so c must be of order at least en.
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Corollary 2.2. For any finite graph G, χρ(G � Z) < ∞.

Proof. Let G be of order n, then G is a (spanning) subgraph of Kn. There-
fore G � Z is a (spanning) subgraph of Kn � Z and by Theorem 2.1 the
assertion follows.

Returning to the Cartesian product of paths we observe that Corol-
lary 2.2 immediately implies that for any m,n ≥ 1, χρ(Pm �Pn � Z) < ∞.

Finbow and Rall [4] proved that the infinite triangular lattice has infinite
packing chromatic number. On the other hand, we can apply Theorem 2.1
to show that the packing chromatic number is finite for every finite strip of
the triangular lattice; see the right-hand side of Figure 1.

3 Square lattices

In this section we focus on the case when two factors of the Cartesian
product are 2-way infinite paths. In particular we prove that χρ(Pm � Z2) =
∞ for m ≥ 2 and that χρ(Z2) ≥ 10.

Our approach on proving that some lattice L cannot be covered by a
finite number of packings is based on arguments using the notion of the
density of a packing. The idea is, roughly speaking, to assign first a unit
area to every vertex of L. Then we redistribute the area to vertices covered
by the packing such that areas at vertices from the packing are equal and
as large as possible. In this way we can define a density for every vertex
from the packing as the reciprocal of the area.

Formally we proceed as follows. Let Xk be a k-packing in L. For every
x from L and a positive integer l we denote by Nl(x) the set vertices at
distance at most l from x, i.e. Nl(x) := {y : y ∈ L,dist(x, y) ≤ l}. Observe
that for arbitrary vertices u and v of Xk the sets Nbk/2c(u) and Nbk/2c(v)
are disjoint, since the vertices u and v are at distance greater than k.

Let k be an odd number, x be a vertex from Xk, and y be a vertex at
distance

⌈
k
2

⌉
from x. Then there is no vertex from Xk in Nbk/2c(y). Hence

y is not in Nbk/2c(z) of any vertex z from Xk. We redistribute the unit area
assigned to y to vertices of Xk by sending the reciprocal of its degree to
every of its neighboring sets Nbk/2c(x) as follows:

Definition 3.1. The k-area A(x, k) assigned to a vertex x ∈ V (L) is defined
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by

A(x, k) :=


|Nbk/2c(x)| for k even ,

|Nbk/2c(x)|+
∑

y∈V (G)
dist(x,y)=dk/2e

|N1(y) ∩Nbk/2c(x)|
deg(y)

for k odd .

If the k-area is the same for all vertices of the lattice L we define A(k) :=
A(x, k), where x is chosen arbitrarily.

By abuse of language we only speak of area instead of k-area if k is clear
from the context. See Figure 2 for an example of distribution of the area
in Z2. Note that the area A(k) is in particular well-defined for lattices that
are vertex transitive.

A(2) = 5 A(3) = 8

Figure 2: Coverage of Z2 by X2 on the left and by X3 on the right. Vertices
from the packings are black. The dotted cross shapes correspond to N1(x).
The white vertices on the right are not covered by any set N1(x), x ∈ X3.
For every white vertex, each adjoining set N1(x) receives 1

4 or 2
4 of its area,

depending on the mutual position.

The definition of the area is justified in the following fundamental ob-
servation.

Proposition 3.2. If a finite graph G has a packing k-coloring and all areas
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A(i), 1 ≤ i ≤ k, are well-defined, then

k∑
i=1

1
A(i)

≥ 1 .

Proof. If G has n vertices then any color class Xi can contain at most n
A(i)

vertices. Therefore, n = |VG| = |X1| + · · · + |Xk| ≤ n
A(1) + · · · + n

A(k) , and
the assertion follows.

Definition 3.3. Let G be a graph. Then the density of a set of vertices
X ⊂ V (G) is

d(X) := lim sup
l→∞

max
x∈V

{ |X ∩Nl(x)|
|Nl(x)|

}
.

The following claim goes immediately:

Observation 3.4. Let G be a graph and X ( V (G). Then for every ε > 0
there exists l0 such that for every vertex x ∈ V (G) and l > l0,

|X ∩Nl(x)|
|Nl(x)|

< d(X) + ε .

We now get an analogue of Proposition 3.2.

Lemma 3.5. For every finite packing coloring with k classes X1, X2, . . . , Xk

of a graph G holds that

k∑
i=1

d(Xi) ≥ d(X1 ∪X2) +
k∑

i=3

d(Xi) ≥ d
( k⋃

i=1

Xi

)
= 1 .

Proof. We apply iteratively the following argument that for any vertex x
and arbitrarily positive small ε, every sufficiently large l satisfies that

|Nl(x) ∩ (X ∪ Y )|
|Nl(x)|

≤ |Nl(x) ∩X|
|Nl(x)|

+
|Nl(x) ∩ Y |
|Nl(x)|

≤ d(X) + d(Y ) + ε.

Let x be a vertex of a graph G. We denote the boundary of Nl(x) by
∆Nl(x) := {y : dist(y, x) = l}.
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Lemma 3.6. If for a graph G the area A(k) is well-defined, and if

lim
l→∞

|∆Nl(x)|
|Nl(x)|

= 0 ,

then for any k-packing Xk it holds that d(Xk) ≤ 1
A(k) .

Proof. We choose a vertex x arbitrarily and use the following estimate:
|Xk ∩ Nl(x)| ≤ |Nl(x)|

Ak
+ |{y : l − k ≤ dist(y, x) ≤ l}|. Here the first

summand estimates the maximum number of vertices z of Xk such that
Nbk/2c(z) ⊂ Nl(x). The second summand simply roughly estimates all
the remaining vertices of Nl(x). According to our assumptions the right
summand is negligible in comparison with Nl(x) if l is large enough and the
claim follows.

We now focus our attention to the lattice P2 � Z2.

Lemma 3.7. For every k and the lattice P2 � Z2,

A(k) =

{
k2 + 2 for k even ,

k2 + 1 for k odd .

Proof. Observe that in a single layer of Z2 for any vertex x ∈ Z2 and integer
i it holds that |{y : dist(x, y) = i}| = 4i. Then the number of vertices at
distance at most l in Z2 from any fixed vertex is 1 +

∑l
i=1 4i.

In the lattice P2 � Z2 we first consider the case of an even k = 2l.
We count the size of Nl in both layers separately by using the previous
observation we get that:

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i + 1 +
l−1∑
i=1

4i = 4l2 + 2 = k2 + 2 .

If k = 2l + 1 is odd then we first discuss the case of k = 1. In this case
A(1) = 1 + 5

5 = 2 since N0(x) is just a single vertex and it has 5 neighbors.
For the case of l ≥ 1 we have to distinguish four kinds of vertices that

are at distance l + 1 from some vertex x:

• four such vertices have one neighbor in Nl(x) — those from the same
Z2-layer as x that share a coordinate with x,
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• 4l vertices have two neighbors in Nl(x) — those remaining from the
same layer,

• another four vertices have also two neighbors in Nl(x) — those from
the other layer but which share a coordinate with x,

• 4l − 4 vertices have three neighbors in Nl(x) — all the remaining
vertices from the other layer.

In total we have:

A(k) = |Nl(x)|+ 4
1
5

+ 4l
2
5

+ 4
2
5

+ (4l − 4)
3
5

= 4l2 + 2 + 4l = k2 + 1 .

We now are ready to prove the main result of this section, i.e. that the
packing chromatic number of two layers of the square lattice is infinite.

Theorem 3.8. For any m ≥ 2, it holds that χρ(Pm � Z2) = ∞.

Proof. To get the result it is enough to prove the case m = 2. Let V be the
vertex set of P2 � Z2.

We show that the sum of densities of all optimal k-packings is strictly
less than one and get a contradiction with Lemma 3.5.

Since the lattice P2 � Z2 satisfies assumptions of Lemma 3.6 (cf. also
Lemma 3.7), we can bound densities in terms of area, and for areas use an
explicit expression given by Lemma 3.7.

However, this approach does not work such straightforwardly — the case
of optimal 1- and 2-packings need to be treated separately: Observe that
the box P2 �P2 �P2 (the cube) cannot contain more than five vertices from
X1 ∪ X2. Hence we can bound the density of d(X1 ∪ X2) by 5

8 since the
whole lattice P2 � Z2 can be partitioned into such boxes.

We get a contradiction by the following estimate that holds for any
packing coloring X1, . . . , Xk:

d
( k⋃

i=1

Xi

)
≤ d(X1 ∪X2) +

k∑
i=3

d(Xi) ≤ 5
8

+
∞∑

i=3

1
A(i)

≤

≤ 5
8

+
15∑

i=3

1
A(i)

+
∫ ∞

i=15

di

i2
≤ 0.9329 +

1
15

< 1 .

Here the exact value of the sum of the first 15 summands was obtained by
a computer program.
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In the rest of the section we focus our attention on the square lattice Z2

and improve the lower bound of its packing chromatic number from 9 to 10.
We base the argument on an observation that the best packing patterns for
X1 and other for Xk with even k significantly overlap.

Lemma 3.9. For the lattice Z2 and every k it holds that A(k) =
⌊

k2

2

⌋
+k+1.

Proof. In the proof of Lemma 3.7 we have already observed that |{y :
dist(x, y) = i}| = 4i for every vertex x ∈ Z2 and every i.

In the case of an even k = 2l we have

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i = 2l2 + 2l + 1 =
k2

2
+ k + 1 .

In the case of an odd k = 2l + 1 we have four vertices at distance l + 1
from x that have a single neighbor in Nl(x) and the remaining 4l vertices
at distance l + 1 have two neighbors in Nl(x). We get that

A(k) = |Nl(x)|+ 4
1
4

+ 4l
2
4

= 2l2 + 4l + 2 =
⌊k2

2

⌋
+ k + 1 .

We now show that the best possible coverage of Z2 by X1 ∪ X2 covers
5
8 of the lattice which improves the bound 1

2 + 1
6 corresponding to the case

where X1 and X2 are treated separately.

Lemma 3.10. The density d(X1 ∪X2) on Z2 is at most 5
8 .

Proof.

v1 v2

v3v4v5

v6

v7

v8

Figure 3: The graph O.

10



We first define a graph O on eight vertices consisting of a cycle v1, . . . v6, v1,
a chord v1v4 and two vertices v7 and v8 of degree one adjacent to v1 and v4

respectively.
In Figure 3 is depicted an embedding of the graph O in Z2. We say

that the position of O is [x, y] if in such an embedding of O the vertex v1 is
placed at [x, y].

The square lattice Z2 can be partitioned into copies of O, e.g. those at
copies of O placed at positions [4i + 2j, 2j] where i, j ∈ Z. This partition is
depicted in Figure 4 and through the proof we assume that it is fixed.

y

x

Figure 4: A partition of Z2 into isomorphic copies of O.

Assume that X1, . . . , Xk is a packing k-coloring of Z2. Let X be the
union of X1 and X2. We bound the density of X according to Definition 3.3,
but first we present some properties of X and O. For this purpose, a copy
of O is called a z-copy if it contains exactly z vertices of X.

The goal is to show that on average every copy of O contains at most 5
vertices of X.

We assume that the partition contains a 6-copy O[x, y] and without lost
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of generality assume, that v3, v6, v7, v8 ∈ X1 and v2, v5 ∈ X2.

vertices of X1

vertices of X2

other vertices

Figure 5: A 6-copy O[x, y] is the bottom left copy of O. The others are
possibilities for a 5-copy O[x + 2, y + 2].

We claim that if the partition contains another 6-copy O[x + 2i, y + 2i]
for some i > 0 then there exists j ∈ [0, i] such that O[x+2j, y+2j] contains
strictly less than 5 vertices of X.

Observe that v6 and v7 of O[x + 2, y + 2] do not belong to X. There
are four possibilities of extending X such that O[x + 2, y + 2] contains five
vertices of X. They are depicted in Figure 5. All four possibilities force
that v6 and v7 from O[x + 4, y + 4] do not belong to X. Hence it becomes
an invariant which propagates through the diagonal up to O[x + 2i, y + 2i].
This contradiction proves the claim.

Note that the choice of the diagonal depends on the configuration of X1

and X2 on O[x, y]. It is essential for the next argument that the diagonal
can be always traversed such that the x coordinate grows. In the sequel we
refer to such a configuration as to an O-strip.

It may happen that two O-strips have different orientations and hence
they cross. Assume that the partition contains appropriate 6-copies O[x−
2i, y − 2i] and O[x − 2j, y + 2j] for positive i, j such that O[x, y] is in the
intersection of the two corresponding O-strips.

Assume also that between O[x, y] and O[x− 2i, y− 2i] are only 5-copies
as well as for the other O-strip. We reuse the invariant from the previous
paragraph and get that X contains no v5, v6, v7 or v8 of O[x, y]. Moreover,
at most three vertices of v1, . . . , v4 may belong to X. Hence O[x, y] contains
at most three vertices of X. See Figure 6.

Now we are ready to prove the limit on the density of X. For every
6-copy C we traverse the diagonal while increasing the first coordinate. We
either encounter a z-copy D where z < 5 or the diagonal consist only of
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[x, y]

[x− 2j, y + 2j]

[x− 2i, y − 2i]

vertices of X1

vertices of X2

not sure
other vertices

Figure 6: Intersection of two O-strips. In every possible intersection some
vertices are forced to be in X1, X2, or they are not covered at all. The
square vertices are not forced.

5-copies. The z-copy D is a pairing copy for C. Note that D can be in two
pairs but then z < 4.

Let x be an arbitrary vertex. We use the fact that liml→∞
|∆Nl(x)|
|Nl(x)| = 0

on Z2. We denote by Ol(x) the set of copies of O which are included in
Nl(x).

Now we show that |X ∩Nl(x)| ≤ 5|Ol|+ c|∆Nl(x)|. If a 6-copy and its
pair copy are both in Ol(x) then they contribute to X ∩Nl(x) at most 10
vertices. Indeed, if the two copies are paired with a single copy of O then
these three contain at most 15 vertices of X.

Observe that the number of 6-copies which has no pair copy in Ol is
linear in |∆Nl(x)| since traversing a diagonal of a copy of O without its pair
in Ol(x) ends on the boundary. Note that Ol(x) does not have to cover
whole Nl(x) but it can miss linearly many vertices of the boundary. See
Figure 7.

Finally, the density of X is:

d(X) ≤ lim sup
l→∞

(
5
8

+
c|∆Nl(x)|
|Nl(x)|

)
=

5
8
.
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6-copy of O;

pairing O copy for a 6-copy or O-copy on border

vertices not covered by Ol

vertices in Ol

Figure 7: Bounding density of X in Nl(x)

Theorem 3.11. For the infinite square lattice Z2 it holds that 10 ≤ χρ(Z2).

Proof. We compute an upper bound on the density of the union of pack-
ings X1, X2, . . . , X9. The bound for the union of X1 and X2 is given in
Lemma 3.10. The other packings are bounded separately by using Lemma 3.9.

d
( 9⋃

i=1

Xi

)
≤ 5

8
+

9∑
i=3

1
A(i)

=
3830381
3837600

< 1.

Finally Lemma 3.5 implies that the packing chromatic number of Z2 is
at least 10.

4 Hexagonal lattices

We now turn our attention to the infinite hexagonal lattice H. We first
exhibit its packing coloring of H that uses only 7 colors. This result was
already presented during the workshop Cycles and Colourings 2007 [3], but
has not been published so far.
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Theorem 4.1. For the hexagonal lattice H, χρ(H) ≤ 7.

Proof. We exhibit a tiling ofH; refer to Figure 8. One class of the bipartition
of the lattice H is the first color class X1. The other class of bipartition can
be covered by packings X2, . . . , X7. The pattern for filling the hexagonal
lattice consists of 12 vertices. It is bordered by a bold line in the figure.

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

3

1

?

1

?

1
3

Figure 8: The pattern for partitioning hexagonal lattice using 7 packings of
pairwise different width.

Our next goal is to show that six layers of the hexagonal lattice cannot
be covered by a finite number of packings of pairwise different width. We
follow the same approach as we have used for proving Theorem 3.8. We
number the hexagonal layers of P6 �H by 1, 2, 3, 4, 5, 6 where layer 1 and
layer 6 are on the boundary. Every vertex is in one layer.

Lemma 4.2. For every l ≥ 6, the density of X2l on P6 �H is at most
1

9l2−36l+66 . The upper bounds on d(X2), d(X4), . . . , (X10) are given in the
next table.

l 1 2 3 4 5
d(X2l) ≤ 1

5
1
15

1
34

1
65

1
111

Proof. We count the size of Nl(x) and obtain an upper bound on the density
due to Lemma 3.6. The size of Nl(x) depends on the choice of x. More
precisely it depends on the layer of x. The smallest size of Nl(x) is for x in
one of the boundary layers. On the other hand it is the largest for layers
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3 and 4. Hence we bound the size Nl(x) from below by the size of Nl of
vertices in layer 1.

Let y be a vertex of H. Then the number of vertices at distance l is 3l.
Hence the number of vertices at distance at most l including y is

|NHl| := 1 +
l∑

i=1

3i = 1 + 3
(l + 1)l

2
.

For a vertex x in the layer 1 we compute the size of Nl(x) in the following
way:

|Nl(x)| =
l∑

i=l−5

|NHi| = 9l2 − 36l + 66.

Note that the last equality holds only for l ≥ 6. The values of Nl(x) for
smaler values of l were computed explicitly.

Lemma 4.3. Any packings X1, X2, X3, and X4 on P3 �H staisfy that:

• d(X3) ≤ 2
18 .

• d(X1 ∪X2 ∪X4) ≤ 12
18 .

Proof. We partition P3 �H into copies of P3 �C6. The graph P3 �C6 and
partitioning of H into disjoint copies of C6 are depicted in Figure 9.

The graph P3 �C6 consists of three copies of C6. We call them layer 1,
layer 2, and layer 3 where layer 2 is the middle one.

The first claim of the lemma follows from the simple fact that |X3 ∩
(P3 �C6)| ≤ 2.

In the rest of the proof we abbreviate X := X1 ∪X2 ∪X4.
Assume that it is possible to cover 13 vertices of P3 �C6 by X. Then

there is a copy C of C6 such that |X ∩ C| = 5. There are two possibilities
of such a covering: either |X2 ∩ C| = 1 or |X2 ∩ C| = 2.

First we discuss the case that there are two layers with five vertices of
X. The only possibility is that they are not neighbors because of vertices
from X4. Hence these layers are 1 and 3. Two cases of possible layer 1 are
depicted in Figure 10. These two cases are compatible four cases for layer 3.
We determined them by the position of a vertex from X4 which is unique.
It is not possible to cover more than one vertex in layer 2, therefore we get
at most 11 covered vertices.
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Now we know that one layer contains five vertices and the other two
contain four vertices. We introduce two observations about X2 and X1∪X2

which give us more information about possible structure of the layers.
The first observation is that if one of the layers contains two vertices of

X2 then the neighboring layer(s) does not contain any vertices of X2. This
holds since all vertices in the neighboring layers are at distance at most two
from the vertices of X2.

The second observation is that P3 �C6 contains at most 11 vertices of
X1 ∪X2. So let there be 12 such vertices. One layer may contain at most
four vertices of X1∪X2. Hence every layer contains four of them. Moreover,
every layer contains exactly one vertex of X2 since every layer must contain
at least one. Take the middle layer and let v be the vertex from X2. Since
we want to cover four vertices of the middle layer, the vertices of X1 are
determined by the position of v. Then vertices of X1 are also determined
in the other two layers since there must be three of them in each; refer
Figure 9. Now the only two vertices left for X2 in layers one and three
are too close to each other hence it is not possible to cover 12 vertices by
X1 ∪X2.

v

vertices in X1

vertex in X2

candidates for X2

other vertices

Figure 9: On the left-hand side is a possible tiling of the hexagonal lattice
using C6’s. On the right-hand side is a coverage of C6 �P3 by X1 and X2

which contains 9 vertices of X1 and a vertex of X2 in the middle layer. There
are only two other candidate vertices for X2, which are square vertices. But
they are too close to be both in X2.

Since X1∪X2 covers at most 11 vertices and we want to cover 13 vertices,
we derived that two vertices must be from X4. These two vertices must be
in layer 1 and layer 3. Hence the layer containing five vertices of X must be
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Figure 10: Layer 1 contains five vertices of X. There are two possibilities.
The first one is on the left and the second one is on the right. Layer 3
contains also five vertices of X. Vertices from the middle layer are assigned
lists of available packings.

layer 1 or layer 3. Assume assume without lost of generality that it is layer
1. Note that it cannot be the middle one since it does not contain a vertex
from X4. The other two layers must each contain four vertices of X.

Hence the middle layer must contain one vertex from X2 and three
vertices of X1. This implies that the first layer contains only one vertex
from X2. Hence we know the configurations for layer 1 and layer 2. See
Figure 11. We observe that there are only three vertices in layer 3 which
can be in X. Hence we failed to include 13 vertices of P3 �C6 to X.

Note that in the following lemma we get a better estimate while counting
on P3 �H instead of P6 �H. We are able to obtain at most 1

21.8 for P6 �H.

Lemma 4.4. The density of any packing X5 on P3 �H is at most 1
21.9 .

Proof. We bound the density using Lemma 3.6. We compute A(x, 5) in
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Figure 11: Let layer 1 contain five vertices of X and layer 2 contain four
vertices of X. They must look as depicted. Vertices of the third layer have
assigned lists of possible colors. But there are only three with nonempty
list.

P3 �H for a vertex x in one of two outer layers. Assume layer 1 for x.
Then the area consists of vertices in N2(x) together with the part obtained
from vertices at distance three from x. We distinguish several types of these
vertices.

• six vertices from the layer 1 have one neighbor in N2(x),

• three vertices from the layer 1 have two neighbors in N2(x),

• six vertices from the layer 2 have two neighbors in N2(x),

• three vertices from the layer 3 have two neighbors in N2(x).

In total we have:

A(x, 5) = 15 +
6
4

+
6
4

+
12
5

+
6
4

= 21.9 .

For a vertex x from the middle layer the area A(x, 5) is 25.4 hence we
can estimate the area by 21.9 for any vertex of P3 �H. Refer to Figure 12
for three hexagonal layers of P3 �H and N2(x).

Theorem 4.5. For any m ≥ 6 it holds that χρ(Pm �H) = ∞.

Proof. Assume m = 6. We show that the sum of densities of all k-packing
is strictly less than 1 and we get a contradiction with Lemma 3.5.

The lattice P6 �H can be partitioned into two copies of P3 �H. Hence
we can use bound on X1 ∪X2 ∪X3 ∪X4 from Lemma 4.3. Also X5 can be
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layer 1

x

layer 2 layer3

Figure 12: Three layers of hexagonal lattice. Black square corresponds to
x. Black vertices correspond to vertices from N2(x) and white vertices are
at distance 3 from x.

bounded using Lemma 4.4. Since a (2l + 1)-packing is also a 2l-packing we
bound the density of X2l+1 by the density of X2l. Note that the density of
X2l may be bounded by 1

2l2 .
We get the contradiction by the following estimate that holds for any

packing coloring X1, . . . , Xk:

d
( k⋃

i=1

Xi

)
≤ 14

18
+

1
21.9

+
∞∑

i=6

d(Xi)

≤ 541
657

+
59∑

i=6

d(Xi) +
∞∑

i=30

2
(2i)2

≤ 0.982 +
1
2

∫ ∞

i=29

di

i2
≤ 0.982 +

1
58

< 1 .

Again, the exact value of the sum of the first 59 summands was enumerated
by a computer program.

5 Conclusion

In our opinion the following related problems deserve further exploration:

• When the step to infinity occurs for χρ(Pm �H)?

• Determine the exact value of χρ(Z2) as suggested by Goddard et al. [5].
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• Do planar cubic graphs have bounded packing chromatic number?
(Brought to us by R. Škrekovski.)

References
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