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Abstract

Constraint satisfaction problems have enjoyed much attention since
the early seventies, and in the last decade have become also a focus of
attention amongst theoreticians. Graph colourings are a special class
of constraint satisfaction problems; they offer a microcosm of many
of the considerations that occur in constraint satisfaction. From the
point of view of theory, they are well known to exhibit a dichotomy
of complexity - the k-colouring problem is polynomial time solvable
when k ≤ 2, and NP-complete when k ≥ 3. Similar dichotomy has
been proved for the class of graph homomorphism problems, which
are intermediate problems between graph colouring and constraint
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satisfaction. However, for general constraint satisfaction problems,
dichotomy has only been conjectured. Although the conjecture re-
mains unproven to this day, it has been driving much of the theo-
retical research on constraint satisfaction problems, which combines
methods of logic, universal algebra, analysis, and combinatorics. Cur-
rently, this is a very active area of research, and it is our goal here
to present some of the recent developments, updating some of the in-
formation in existing books and surveys, while focusing on both the
mathematical and the computational aspects of the theory. Given
the level of activity, we are only able to survey a fraction of the new
work, with emphasis on our own areas of interest.
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1 Introduction

Consider the following scheduling application. Each semester at a typical
university, the courses taught need to be scheduled for examination: several
courses can be examined in one examination period, but two courses that
have common students must be scheduled at different times. The university
aims to schedule all examinations in as few examination periods as possible.
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The situation as simplified above leads to a classical formulation via
graph colouring [32, 138, 178]. We form the graph G in which the vertices
are the courses taught, and in which two courses are adjacent just if the
courses conflict, i.e., have students in common. A schedule with k exam
periods corresponds exactly to a k-colouring of G. In another view of this
model, we may say that the courses represent variables with values from a
certain domain of possibilities, which are constrained by requiring certain
pairs of courses (those that conflict) to be assigned different values.

1.1 Constraint Satisfaction

A general constraint satisfaction problem is given by a set V of variables
which are to be assigned values from a domain D, and a set C of constraints,
each of which restricts certain combinations of variables to certain sets of
allowed values. Formally, a constraint satisfaction problem is defined a
triple V,D, C, where V is a set of variables, D is a domain (set) of values,
and C is a set of constraints. Each constraint is a triple (r, t, U), where r is
a positive integer called arity of the constraint, t is an r-tuple of variables,
and U is a set of r-tuples of values. An evaluation of the variables is a
mapping f : V → D. Such an evaluation satisfies a constraint (r, t, U) ∈ C
if (f(t1), f(t2), . . . , f(tr)) ∈ U . A solution is an evaluation that satisfies all
constraints.

Obviously, such a general context allows much more refined models of
the exam scheduling situation - we may express a much wider variety of
restrictions on the schedule. For instance, suppose we wish to express the
natural space limitation requiring that no more than three experimental
physics exams are to be scheduled at any given time. This can be seen as a
restriction on each quadruple of experimental physics courses, which limits
their assigned values to those quadruples of time periods which do not fall
within the same time period.

As another example, consider the channel assignment problem in which
frequencies (channels) are assigned to transmitters for wireless communica-
tion, cf., e.g., [74].) Since the number of frequencies is limited, the operator
must find a way to reuse the channels, in a way that minimizes interference.
Interference will surely happen on two transmitters on the same antenna;
these must receive different channels. Interference may also happen, to a
smaller degree, on two transmitters on different antennas but in the same
base transceiver station, or located in a particular way with respect to a
geographical feature. Furthermore, there may be some interference even if
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two transmitters operate on adjacent, or nearby, channels, or on a chan-
nel and its harmonic. There may also be restrictions on which channels a
particular transmitter may use—for instance at the edge of the operator’s
territory there may be constraints imposed by a neighbouring country or
operator. We can model this problem by viewing the individual transmitters
as variables whose values are the frequencies. To express the interference
constraints we simply restrict pairs of more or less interfering transmitters
to frequencies that can accommodate them. In addition to these binary
constraints we also have the unary constraints that restrict the transmitters
at the edge of the territory to frequencies available in such location.

These examples should make it clear that a great variety of natural
problems can be expressed in this model, including problems in scheduling,
planning, data bases, machine vision, belief maintenance, temporal rea-
soning, type reconstruction, and many other areas of artificial intelligence
[37, 44, 126, 137, 145, 146, 183, 185]. The model was pioneered by Monta-
nari [149], and enjoys wide popularity: there are journals entirely devoted to
solution of such problems, and books have been written about them [182].
The recent Handbook of Constraint Satisfaction [1] witnesses the activity
in the field. Our focus here is on the theoretical aspects of constraint satis-
faction, which forms only a small but nevertheless very active part of this
area. (In the Handbook [1], it is represented by one chapter.) Because of
this rapid development, we feel another update of recent surveys such as
[71, 98, 106, 99, 150, 152] is justified.

1.2 Homomorphisms

An alternate view of constraint satisfaction was proposed by Feder and Vardi
[73]. Basically, it returns to the original definition of the graph colouring
problem described earlier. In that case we were able to describe all con-
straints as a non-equality relation imposed on certain pairs of vertices. With
a suitably generalized context, we will be able to do something similar for
all constraint satisfaction problems.

A relational structure G consists of a finite set V (G), whose elements
we shall call vertices in order to underscore our graph theoretic inspiration,
and a finite number of relations R1, R2, . . . , Rp, of arities r1, r2, . . . , rp re-
spectively. The vector (r1, r2, . . . , rp) is called the type of G. Given two
relational structures G (with vertex set V (G) and relations R1, R2, . . . , Rp)
and H (with vertex set V (H) and relations S1, S2, . . . , Sp), of the same type
(the arity of each Ri is the same as that of the corresponding Si), a homo-
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morphism of G to H is a mapping f : V (G) → V (H) which preserves all
pairs of corresponding relations, i.e., such that (v1, v2, . . . , vri) ∈ Ri implies
(f(v1), f(v2), . . . , f(vri

)) ∈ Si, for all i = 1, 2, . . . , p.
In order to minimize the notation, we have adopted a natural extension

of the graph theoretic notation. However, relational structures are complex
objects, and we remark that it is more common to use a special notation,
where a structure is written in bold font, say A, its ground set by the
corresponding letter, A, and the relational symbols are usually written as
RA.

Given a constraint satisfaction problem with variables V, domain D, and
a set C of constraints, we define the structure G with V (G) = V and the
structure H with V (H) = D, where each U occurring in some constraint
C = (r, t, U) defines an r-ary relation Si on V (H), for which the corre-
sponding relation Ri consists of all r-tuples t′ of variables with a constraint
C ′ = (r, t′, U). Then a solution to the constraint satisfaction problem is
simply a homomorphism of G to H. Of course, the reverse of this transfor-
mation succeeds in expressing the existence of any homomorphism of some
general structures G to H as a constraint satisfaction problem. Therefore
from now on we think of constraint satisfaction problems as problems seek-
ing the existence of a homomorphism between relational structures [73].
This is not to say that we advocate the use of such reformulations in indi-
vidual constraint satisfaction problems, quite to the contrary: the relational
formulation doesn’t have the same ”feel” for individual data and its seman-
tic meaning which can (and must) be used in solving concrete problems.
On the theoretical side, however, this formulation of constraint satisfaction
problems has proved crucial, by relating it to the techniques of categorial
and universal algebra [28, 29] and more generally to algebraic combina-
torics, as well as to statistical physics [19, 78, 106, 157]. For example, the
study of homomorphisms between relational structures has a long tradition
in the ‘Prague School’ of category theory [106], and many theoretical in-
sights, such as recorded for instance in the monograph [172], are applicable
to the present context.

A typical aspect of our example scheduling problem is the fact that the
structure G of courses to be examined changes every semester, while the
structure H of exam periods tends to be much more stable. (For instance,
which courses are taught, and which pairs of courses have students in com-
mon, varies, while the total number of exam periods, the number of periods
per day, and so on, may remain constant for several consecutive semesters.)
A similar situation arises in the channel assignment problem - again the
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values (frequencies) H are the same over a number of problems, while the
variables (transmitters) G vary according to concrete locations. This oc-
curs for many other applications (the structure H tends to be fixed), and
it motivates the following variant of the constraint satisfaction problem.

Let H be a fixed relational structure. The constraint satisfaction problem
CSP(H) asks whether or not an input relational structure G, of the same
type as H, admits a homomorphism to H.

Consider the problem CSP(H), where H has only one (binary) relation,
S1, consisting of all ordered pairs of distinct vertices of V (H). Since the
fixed structure H has one symmetric binary relation, the input structure
G may be assumed to have also just one symmetric binary relation, i.e.,
G is a graph. Thus we have the problem of colouring the input structure
(graph) G with |V (H)| colours, so that adjacent vertices of G obtain differ-
ent colours. This is the graph colouring problem. Suppose more generally
that H has any one symmetric binary relation, in other words, H is an undi-
rected graph. Then the problem CSP(H) may be assumed to be restricted
to undirected input graphs G; it asks whether or not G admits a homo-
morphism to H. This problem is called the graph H-colouring problem.
Similarly, if H is a structure with one (not necessarily symmetric) binary
relation, i.e., a digraph, each input G is also a digraph, and the problem re-
duces to the existence of digraph homomorphisms [106]. We emphasize that
this view regards undirected graphs as a special class of digraphs, namely
ones with a symmetric adjacency relation. Many (but not all) phenomena
that occur for general constraint satisfaction are typified by their restric-
tions in the context of digraph homomorphisms. Definitions and results are
often stated in the restricted domain of digraph homomorphisms [106], but
with the understanding that they apply equally well in the general context
of constraint satisfaction. Consider, for instance, the following observa-
tions ([106]). When H and H ′ are two digraphs (more generally, relational
structures of the same type) which admit a homomorphism of H to H ′ as
well as a homomorphism of H ′ to H, then the two problems CSP(H) and
CSP(H ′) are obviously equivalent. (A structure G admits a homomorphism
to H if and only if it admits a homomorphism to H ′, since the composition
of two homomorphisms is again a homomorphism.) A digraph (relational
structure) H with no proper substructure H ′ to which H admits a homo-
morphism is called a core [102, 106]. It is easy to check that every digraph
(relational structure) H has, up to isomorphism, a unique core subdigraph
(substructure) H ′ to which it admits a homomorphism [102, 106]. Thus we
typically restrict our attention to problems CSP(H) where H is a core.
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2 Dichotomy

The k-colouring problem is polynomial time solvable when k = 1, 2 and is
NP-complete otherwise. This basic fact (established at the very onset of
the theory of NP-completeness [81]) illustrates the dichotomy of possible
complexities of the class of k-colouring problems, as k varies. There is,
in principle, no reason for each colouring problem to be polynomial time
solvable (one of the easiest problems in NP) or NP-complete (one of the
hardest problems in NP). Indeed, Ladner [130] has shown that if P 6= NP,
there are in NP problems that are neither polynomial nor NP-complete
- in fact there must be an infinite hierarchy of such (non-polynomially-
equivalent) problems. Since these “intermediate difficulty” problems must
exist in NP (unless P=NP), dichotomies are always somewhat surprizing,
especially if they apply to a broad class of problems.

Dichotomy for graph H-colouring problems has been proved by the au-
thors in [104]. In other words, we have shown that, for every graph H, the
problem of deciding the existence of a homomorphism of an input graph G to
H is polynomial time solvable, or is NP-complete. In fact, we have classified
which problems are polynomial time solvable and which are NP-complete.

Theorem 2.1 (Graph Dichotomy) [104] Suppose H is a graph, i.e., a rela-
tional structure with a single relation which is binary and symmetric. Then
CSP(H) is NP-complete, except in the following, polynomial time solvable,
cases.

1. H is bipartite; or

2. H has a loop

The proof of the Graph Dichotomy in [104] was surprizingly complex. In
the intervening years, a number of new proofs have appeared [26, 128, 187],
based on a great variety of ideas and approaches. We discuss these in
several places of this manuscript, as they present a testing ground of these
techniques. In this sense, the Graph Dichotomy is a leitmotif of this survey.

Another early dichotomy has been proved for all Boolean satisfiability
problems by Schaeffer [179]. These are the problems CSP(H) where H has
two vertices, say, 0 and 1. To describe Schaeffer’s classification, we shall re-
call four well known operations on tuples. The OR operation on two tuples
(a1, a2, . . . , as) and (b1, b2, . . . , bs) is the tuple (z1, z2, . . . , zs) where each
zi = ai ∨ bi (zi = 1 unless both ai = bi = 0, in which case zi = 0).
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The AND operation on two tuples (a1, a2, . . . , as) and (b1, b2, . . . , bs) is
the tuple (z1, z2, . . . , zs) where each zi = ai ∧ bi (zi = 0 unless both
ai = bi = 1, in which case zi = 1). The MAJORITY operation on
three tuples (a1, a2, . . . , as), (b1, b2, . . . , bs), and (c1, c2, . . . , cs) is the tuple
(z1, z2, . . . , zs) where each zi is the majority value (0 or 1) of ai, bi, ci. The
XOR (exclusive OR, also known as MINORITY) operation on three tuples
(a1, a2, . . . , as), (b1, b2, . . . , bs), and (c1, c2, . . . , cs) is the tuple (z1, z2, . . . , zs)
where each zi is the exclusive-or value of ai, bi, ci (equal to 1 if the num-
ber of 1’s amongst ai, bi, ci is odd, and 0 otherwise). Schaeffer proved the
following classification [179].

Theorem 2.2 (Boolean Dichotomy) [179] Suppose H is a relational struc-
ture with V (H) = {0, 1} and relations S1, S2, . . . , Sp. Then CSP(H) is
NP-complete, except in the following, polynomial time solvable, cases:

1. each Si contains the si-tuple (0, 0, . . . , 0); or

2. each Si contains the si-tuple (1, 1, . . . , 1); or

3. each Si is closed under the OR operation; or

4. each Si is closed under the AND operation; or

5. each Si is closed under the MAJORITY operation; or

6. each Si is closed under the XOR operation.

The polynomial time algorithms for these cases are well known. In
cases 1 and 2, the core of H has one vertex, and any structure G admits
a homomorphism to this core (and hence to H). Case 3 (respectively 4)
corresponds to problems equivalent to the case where each Si consists of all
si-tuples with 1 in the first coordinate, plus possibly the tuple (0, 0, . . . , 0)
(respectively all si-tuples with 0 in the first coordinate, plus possibly the tu-
ple (1, 1, . . . , 1)). Thus they can be expressed by Horn clauses (respectively
dual-Horn clauses), i.e., disjunctions with at most one negated (respectively
unnegated) variable, and solved as in [47, 111]. Case 5 corresponds to prob-
lems equivalent to H having just four binary relations, S1 consisting of all
pairs other than (0, 0), S2 consisting of all pairs other than (0, 1), S3, con-
sisting of all pairs other than (1, 0), and S4, consisting of all pairs other
than (1, 1). Thus these are the problems expressible by disjunctions with
two variables each, i.e., by 2-satisfiability [6]. The last case corresponds to
systems of linear equations modulo two, solvable by Gaussian elimination.
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The Boolean and Graph Dichotomy theorems, Theorem 2.1, and Theo-
rem 2.2 motivated Feder and Vardi [73] to formulate the following conjec-
ture, which remains open to this day, and motivates much research in the
area.

Conjecture 2.3 (The Dichotomy Conjecture) [73] For any relational struc-
ture H, the problem CSP(H) is NP-complete or polynomial time solvable.

By now there is strong supporting evidence for the conjecture - in the
intervening years it has been verified in many cases [11, 12, 13, 23, 24, 14, 38,
40, 51, 53, 54, 55, 60, 61, 62, 63, 67, 72, 136, 140, 171], cf. [52, 106], promi-
nently including CSP(H) for structures H with up to three vertices [25],
extending the Boolean Dichotomy of [179], and for conservative structures
[23], discussed in Section 5.

It is important to note that dichotomy is not known for the case of
digraphs, i.e., for problems CSP(H) where H has only one relation, S1,
which is binary (but not necessarily symmetric). Many results have been
proved, classifying the complexity of these digraph H-colouring problems for
special families of digraphs H [11, 14, 12, 13, 51, 67, 92]. In fact, [11, 14]
conjectured in 1989, a specific dichotomy classification for digraphs without
sources and sinks (i.e., with all indegrees and outdegrees positive).

Conjecture 2.4 [11, 14] Suppose H is a core digraph with all indegrees
and outdegrees positive. If each component of H is a directed cycle, the
digraph H-colouring problem is polynomial time solvable; otherwise it is
NP-complete.

After nearly two decades, this conjecture has been proved [15]. (See
Section 3.3.) The fact that this longstanding open problem could now be
solved, testifies to the success of the algebraic method outlined in the next
sections.

With vertices of indegree or outdegree zero, very little is known. For
instance, dichotomy is not known if the underlying undirected graph of H
is a tree, not even if it is a union of three paths meeting at one vertex - for
the so called triads H [107].

Finally, we note that it was shown by Feder and Vardi [73] that di-
chotomy for digraph H-colouring problems would imply the entire Dichotomy
Conjecture 2.3. Thus there is a striking difference between the H-colouring
problems for graphs and for digraphs.
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2.1 A Combinatorial View of NP

The Dichotomy Conjecture 2.3 appears to be an important and difficult
question. In a sense, the class of problems CSP(H) is a largest class in which
dichotomy can be expected. This was concretely formulated and proved by
Feder and Vardi [73]. Recently, the formulation has been combinatorially
refined by Kun and Nešetřil [129]; we now review this research. The logic
class SNP (“syntactic NP”) consists of all problems expressible by an exis-
tential second-order formula with a universal first-order part [49, 73, 123].
For our purposes, we view the input of the problem as a relational structure
S with the vertex set V (S) = X and relational symbols R(S) = R, and view
the existentially quantified relations as “proof relations” Π. It is shown in
[73] that every problem (language) L in SNP is equivalent to a formula of
the form

∃P∀x ∈ S
∧
i

¬
(
αi ∧ βi ∧ εi

)
,

where

• αi is a conjunction of atoms or negated atoms involving variables and
input relations (i.e., is of the form R(x) and ¬R(x) for a relational
symbol R and x a tuple of elements of X);

• βi is a conjunction of atoms and negated atoms involving variables
and existentially quantified proof relations (i.e., is of the form P (x)
and ¬P (x) for P ∈ Π and x a tuple of elements of X); and

• εi is the conjunction of atoms involving variables and inequalities (i.e.
of form x 6= y).

A formula of this type is called canonical formula of the language L.
We say that the language L is monotone if there are no negations in the
αi’s. (In such a language, more relations lead to fewer satisfiable formulas.)
The language L is monadic if the relations in P are all monadic (all proof
relations are unary). The language L is without inequality if no εi appears
in the formula.

Example: Consider the language containing one binary symbol R and
two unary proof relations P1, P2 and the following formula

∃P1∃P2∀x1, x2, x3, y ∈ X

10



(P1(x1) ∧ P1(x2) ∧ P1(x3)) ∨ (P2(x1) ∧ P2(x2) ∧ P2(x3))∧

(R(x1, x2) ∧R(x1, x3) ∧R(x2, x3)) ∧ ((x1 6= x2) ∧ (x1 6= x3) ∧ (x2 6= x3))

∧
[
¬(¬P1(y) ∧ ¬P2(y))

]
.

This formula correspond to the language of all relations whose vertices
can be covered by two sets is such a way that neither of these sets contains
a triple linearly ordered by R. If we in addition postulate that the relation
R is symmetric then these are just graphs which can be vertex partitioned
into two triangle-free graphs.

Feder and Vardi proved that the subclasses of SNP with any two of these
syntactical restrictions have still full computational power of the class NP.
These results can be viewed as a refinement of the classical result of Fagin
[49].

Theorem 2.5 [73]

1. Every problem in NP has a polynomially equivalent problem in mono-
tone SNP without inequality. Moreover, we may assume that the ex-
istential relations are at most binary.

2. Every problem in NP has a polynomially equivalent problem in mono-
tone, monadic SNP.

3. Every problem in NP has a polynomially equivalent problem in monadic
SNP without inequality.

The class with all the three restrictions is called MMSNP (for monotone
monadic SNP without inequality). Feder and Vardi [73] have shown that
each problem in the class MMSNP is polynomially equivalent to a finite
union of classses CSP(Di), i = 1, . . . , t, for some templates Di. Towards
this end, for D = {D1, . . . , Dt}, we denote by CSP(D) the union of classes
CSP(Di), i = 1, . . . , t. (Thus CSP(D) can be viewed as a generalized con-
straint satisfaction problem.)

Theorem 2.6 [73] For every language L in MMSNP there is a finite set of
relational structures D (possibly of different types) and a positive integer k
such that the following hold.

1. L can be polynomially reduced to CSP (D).

2. CSPGirthk
(D) can be polynomially reduced to L.
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The language CSPC(D) is the intersection of CSP (D) with the class C;
the class Girthk consists of all structures without cycles of length k or less.

In fact, the class MMSNP actually coincides with the class of all gener-
alized constraint satisfaction problems.

Theorem 2.7 [127] For every language L in MMSNP there is a finite set
of relational structures D such that L and CSP (D) are polynomially equiv-
alent.

This was first proved, by Feder and Vardi [73], for randomized polyno-
mial reductions, and later on improved to polynomial reductions by Kun
[127].

In [129] these results have been further refined. These refinements yields
a surprising combinatorial setting for the entire class NP. The key notions in
this formulation are the notions of lift and shadow of a relational structure.

Let Γ denote a finite set whose elements we refer to as colours. A Γ-
coloured graph (relational structure) is a graph (or structure) together with
either a colouring of its vertices, or a colouring of its pairs of vertices, by
colours from Γ. (Only in Theorem 2.8 we shall consider colouring of all pairs
- but there this will play an important role). Thus we shall understand by a
coloured graph a graph with coloured vertices. We denote coloured digraphs
(relational structures) by A′, B′ etc. Following the more general notions in
category theory we call A′ a lift of A and A is called the shadow of A′. (In
model theory these notions are often called expansion and reduct.) Thus
(vertex-) coloured digraphs (structures) can be also described as monadic
lifts. A homomorphism of coloured digraphs (relational structures) is a ho-
momorphism of the digraphs (structures) which also preserves the colour
of vertices (pairs of vertices). A homomorphism between two (coloured)
digraphs is a full homomorphism if the preimage of each edge is an edge,
and it is an injective homomorphism if distinct vertices have distinct im-
ages. Let F ′ be a finite set of coloured relational structures (digraphs). By
Forb(F ′) we denote the set of all coloured relational structures (digraphs)
A′ satisfying F ′ 6−→ A′ for every F ′ ∈ F ′. (If we restrict to injective or
full homomorphisms this will be denoted by Forbinj(F ′), or Forbfull(F ′),
respectively.)

Let A′ be a colored structure. We denote by Φ(A′) the natural forgetful
functor that “forgets” colors in A′. If K is a class of colored structures then
Φ(K′) denotes the class of all Φ(A), A′ ∈ K′.

Theorem 2.8 [129] For every language L ∈ NP there exist a finite set of

12



colours Γ and a finite set of Γ-coloured digraphs F ′, where we colour all pairs
of vertices, such that L is computationally equivalent to the membership
problem for Φ(Forb(F ′)).

Theorem 2.9 [129] For every language L ∈ NP there exist a finite set
of colours Γ and a finite set of Γ-coloured digraphs F ′ (where we colour
the vertices), such that L is computationally equivalent to the membership
problem for Φ(Forbinj(F ′)).

Theorem 2.10 [129] For every language L ∈ NP there exist a finite set
of colours Γ and a finite set of Γ-coloured digraphs F ′ (where we colour
the vertices), such that L is computationally equivalent to the membership
problem for Φ(Forbfull(F ′)).

Those monotone properties P of structures which can be described by
finitely many forbidden substructures are of particular interest. This will
be treated in this paper in a section devoted to dualities. Let us mention
here that it has been proved recently by B. Rossman [175] that a homo-
morphism monotone problem is first order definable (FO definable) if and
only if it is positively FO definable (FO+ definable), i.e., if the formula does
not contain any negations (and so implications and inequalitites), and thus
alternatively defined as Forb(F) for a finite set F of structures. Although
FO-definability is not a rare fact (and extremely useful in database theory),
still FO-definability cannot express most combinatorial problems (compare
[168],[5] which characterize all CSP which are FO-definable; see also Theo-
rem 4.4). Thus it may seem to be surprising that the classes of relational
structures defined by existential second order formulas (i.e. the entire class
NP) corresponds exactly to those canonical lifts of structures which are de-
fined by a finite set of forbidden substructures. In other words, the finite
sets of forbidden lifts determine all languages in NP.

It is interesting to note how nicely these results fit the combinatorial
common sense about the difficulty of problems. On the one side, the prob-
lems in CSP correspond to and generalize ordinary (vertex) coloring prob-
lems. One expects a dichotomy here: every CSP problem should be either
polynomial-time solvable or NP-complete. On the other side, the above
formulations (Theorems 2.8,2.9,2.10) model the entire class NP, where we
cannot expect dichotomy. These facts are consistent with the combinatorial
meaning of these classes. The formulation in Theorem 2.8 expresses color-
ing of edges, triples etc., and thus it involves Ramsey theory [93, 151]. We
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have already mentioned above, as an example, how to interpret the problem
whether a graph can be partitioned into two triangle free graphs.

The formulation in Theorem 2.9, by means of injective forbidden sub-
structures, allows one to express classes of graphs with bounded degrees,
or with given girth. The coloring problems for such graph classes represent
well known hard (and classical) combinatorial problems, see for example
[104, 110, 169]. The third formulation, in Theorem 2.10, by means of full
homomorphisms, relates to vertex partitions with a given pattern among
classes. We can express not only the existence of edges but also the non-
existence of non-edges between classes in the partition. Such partitions have
been investigated for instance in [56, 57, 65], and play an important role in
many graph decomposition techniques (such as those involved in the solution
of the Perfect Graph Conjecture [33]). This point of view is further explored
in Section 7.1. This clear distinction between combinatorial interpretations
of syntactic restrictions on formulas expressing the computational power of
NP is one of the pleasing consequences of this approach.

2.2 Polymorphisms

The greatest progress on the dichotomy conjecture resulted from an alge-
braic approach pioneered by Jeavons [117], based on the Galois correspon-
dence in [18, 82]. It turns out that what determines whether a structure
H has a hard or easy constraint satisfaction problem CSP(H), is its set
of polymorphisms. A polymorphism (of order, or arity, k) of H is a map-
ping f : V (Hk) → V (H), such that (vj

1, v
j
2, . . . , v

j
ri

) ∈ Si for j = 1, 2, . . . , k
implies that

(f(v1
1 , v2

1 , . . . , vk
1 ), f(v1

2 , v2
2 , . . . , vk

2 ), . . . , f(v1
ri

, v2
ri

, . . . , vk
ri

)) ∈ Si,

for all relations Si of H. (Thus a polymorphism of order k of H is just a
homomorphism of a suitably defined direct product power Hk to H [172].)
Denoting by Pol(H) the set of all polymorphisms of H, Jeavons [117] ob-
served the following fact.

Theorem 2.11 [117] Assume V (H) = V (H ′). If Pol(H ′) ⊆ Pol(H), then
CSP(H) is polynomially reducible to CSP(H ′).

In particular, if H and H ′ have exactly the same set of polymorphisms (of
all orders), then the constraint satisfaction problems CSP(H) and CSP(H ′)
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are polynomially equivalent, regardless of the relations H and H ′ may have.
The structures H and H ′ need not even have the same type.

These facts have many consequences in the complexity analysis of CSP
and establish the basis of what is known as the algebraic method. Consider,
for instance, the Boolean Dichotomy classification, Theorem 2.2, above.
We have stated the result in a form which emphasizes that what makes
the problems CSP(H) polynomial time solvable, is the existence of certain
operations under which all the relations of H are closed. Each of these
operations corresponds to a polymorphism of H, as we shall discuss below.

Thus structures H having many polymorphisms are likely to have poly-
nomial time solvable problems CSP(H), and structures H which have few
polymorphisms can be expected to have NP-complete problems CSP(H).
Note that every structure H admits some polymorphisms - at least the pro-
jections πi taking (v1, v2, . . . , vk) to vi. If the structure H has any automor-
phisms, i.e., bijective homomorphisms f of H to itself, then any composition
f ◦ πi is also a polymorphism of H. A structure H (with more than one
vertex) which has no other polymorphisms is called projective. It is worth
noting that our definition of projectivity implies that the structure is a core,
because we apply the requirement also to polymorphisms of order one.

Let us return to the problem of graph k-colourability, which we denote
by CSP(Kk). (The complete graph Kk is the structure H with |V (H)| = k
and with one symmetric binary relation, of non-equality. Note that any
permutation of the vertices of Kk is an automorphism of Kk.)

Theorem 2.12 If k ≥ 3, then Kk is projective.

This result has an interesting history. It was discovered independently
by Greenwell and L. Lovász [84] and V. Müller [147, 148] in the context of
uniquely colourable graphs; we have also been informed by A. Blass that
G. Lawvere found a related result in the context of the theory of ultrafil-
ters. The result has been reproved in many different contexts, most notably
using Fourier analysis [3], economic theory [121], and analysis [46]. These
results lead directly to one recent alternative proof of the Graph Dichotomy,
Theorem 2.1 [128].

Recall that CSP(Kk) is NP-complete when k ≥ 3. It follows from Theo-
rem 2.11 and Theorem 2.12 that if a structure H with at least three vertices
is projective, then the problem CSP(H) is NP-complete. In fact, this holds
for all projective structures.

15



Theorem 2.13 [117, 118] If a structure H is projective, then the problem
CSP(H) is NP-complete.

Consider next the structure N which has two vertices 0, 1 and one
ternary relation E(N) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
The following folklore result, cf. [179], makes a nice exercise [106].

Theorem 2.14 The structure N is projective.

Corollary 2.15 The problem CSP(N) is NP-complete.

The problem CSP(N) takes as input a structure G with triples (u, v, w);
its vertices must be assigned values 0, 1 so that each triple receives at least
one 0 and at least one 1. This is the problem of Not-All-Equal Three-
Satisfiability Without Negated Variables, another standard NP-complete
problem [81].

From all available evidence one may guess that if a problem CSP(H)
cannot be shown NP-complete by an (iterated) reduction from CSP(Kk) or
CSP(N), then CSP(H) is polynomial time solvable. The concrete classifi-
cations are related to this intuition. On the other hand, it was shown by
 Luczak and Nešetřil [140] that almost all structures are projective, and hence
have NP-complete problems CSP(H). So, in this sense, the Dichotomy Con-
jecture is asymptotically true (and even asymptotically trivial).

3 Classification

The original dichotomy conjecture, Conjecture 2.3, dates back to a time
when the motivation and evidence for it was based mostly on examples, in
particular, the Graph and Boolean Dichotomy theorems, i.e., Theorem 2.1
and Theorem 2.2. There seemed to be no candidate classification of the
problems into NP-complete and polynomial time solvable; in fact, evidence
from graph theory [11, 13, 14] was quite discouraging as far as a possible
classification was concerned. However, recent intensive efforts have lead to
some concrete propsals and explicit classification conjectures, refining the
original dichotomy conjecture 2.3. Remarkably, these efforts have occured
in very different fields - in universal algebra, in analysis (Fourier analysis in
particular), in complexity theory, and in combinatorics. We present these
approaches in this section. As we shall see (Theorem 3.19 all these ap-
proaches turn out to be equivalent, in the sense that they propose the same
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classification. This remarkable fact seems to lend credence to the these
conjectures, especially in view of the varied backgrounds they come from.

Let us return to the idea that polymorphisms of H tend to make the
problem CSP(H) polynomial time solvable. For the purposes of this discus-
sion, we shall focus on polymorphisms f that are idempotent, i.e., satisfy
f(x, x, . . . , x) = x for all vertices x ∈ V (H). In fact, we may restrict our
attention to idempotent structures, i.e., structures that only admit idem-
potent polymorphisms. Indeed, there is a simple construction to make an
arbitrary core relational structure H into an equivalent idempotent struc-
ture H ′, namely adding, for each vertex v of H, the unary relation Rv

containing the single 1-tuple (v). It is clear that H ′ is idempotent; in par-
ticular, H ′ is a core, and admits no automorphisms other than identity.
Clearly, an idempotent structure is projective if and only if it admits no
polymorphism other than a projection. Dealing with idempotent structures
is more convenient; we are able to restrict our attention to them because of
the following result. (See [106] exercise 2 in chapter 5; see also [29].)

Proposition 3.1 Let H be a core relational structure. Then the problem
CSP(H) is polynomially equivalent to the problem CSP(H ′).

Suppose H is an idempotent structure. Theorem 2.13 says that if H is
projective (admits only projections as polymorphisms), then CSP(H) is NP-
complete. Admitting any polymorphism which is not a projection is, in some
cases, sufficient to ensure that CSP(H) is polynomial time solvable. This is
the case, for instance, when H has only two vertices, as can be checked from
the Boolean Dichotomy classification in Theorem 2.2. However, it is not
sufficient for all relational structures H: there are idempotent structures
H which admit a polymorphism other than projection, yet yield an NP-
complete problem CSP(H) [26]. Nevertheless, there are several natural
extension of Theorem 2.13 to weakened version of projectivity.

3.1 The Algebra of H

Recall that Theorem 2.11 implies that two structures H,H ′ on the same
vertex set with exactly the same polymorphisms, i.e., satisfying Pol(H) =
Pol(H ′), have constraint satisfaction problems CSP(H), CSP(H ′) of the
same complexity. Hence it makes sense to investigate the algebra consisting
of the vertex set V (H) and the set of polymorphisms Pol(H), abstracting
away the structure H itself. A finite algebra is a pair (V,F), where V is a

17



finite set, and F a set of finitary operations on V . A subalgebra of (V,F is,
as would be expected, defined as an algebra (V ′,F ′) where V ′ ⊆ V , such
that the results of all operations in F restricted to V ′ are in V ′, and F ′

consists of the restrictions of the operations in F to V ′. A homomorphic
image of (V,F is an algebra obtained from (V,F by identifying certain pairs
of elements and defining the operations in the natural way [29]. A divisor of
(V,F is a homomorphic image of a subalgebra of (V,F . An algebra (V,F)
is non-trivial if |V | > 1.

The algebra of a structure H, denoted A(H), is (V (H),Pol(H)). As
noted above, Theorem 2.11 implies that the complexity of CSP(H) is the
same for all structures H with the same algebra.

Theorem 3.2 [29] Suppose H is an idempotent relational structure such
that for some non-trivial divisor (V ′,F ′) of A(H), all operations in F ′ are
projections. Then the problem CSP(H) is NP-complete.

This result covers all known NP-complete cases of CSP(H). Accordingly,
Bulatov, Jeavons and Krokhin have refined the dichotomy conjecture as
follows:

Conjecture 3.3 [29] If H is an idempotent relational structure such that
each non-trivial divisor (V ′,F ′) of A(H) has an operation in F ′ which is
not a projection, then the problem CSP(H) is polynomial-time solvable.

Bulatov [26] has used this approach to re-derive the Graph Dichotomy
theorem, Theorem 2.1. In his proof, he avoids much of the details in [104]
by finding a suitable divisor of A(H) (for a non-bipartite H without loops)
to which Theorem 3.2 applies.

3.2 Taylor Polymorphisms

Another way to formulate the weakened projectivity property was presented
by Larose and Zádori [135]. We say that a polymorphism f is inclusive in
position i, if it satisfies an identity involving two variables, with different
entries in position i. More precisely, there exist choices uj , vj ∈ {u, v}, j =
1, 2, . . . , k, with ui 6= vi, such that the identity

f(u1, u2, . . . , uk) = f(v1, v2, . . . , vk)

holds for all u, v ∈ V (H). Polymorphisms inclusive in each position are
called Taylor polymorphisms. Clearly, the i-th projection is not inclusive
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in position i, so projections are not Taylor polymorphisms, and, in fact, a
Taylor polymorphism is just what was sought - a polymorphism far enough
from a projection.

Theorem 3.4 [135] Suppose H is an idempotent relational structure. If H
does not admit a Taylor polymorphism, then the problem CSP(H) is NP-
complete.

As with the previous conjecture, this seems to cover all known NP-
complete cases, and so a refined dichotomy conjecture would look as follows.

Conjecture 3.5 [29] Suppose H is an idempotent relational structure. If
H admits a Taylor polymorphism, then the problem CSP(H) is polynomial
time solvable.

For instance, we consider the following special Taylor polymorphisms
that are often helpful. A near-unanimity polymorphism is a polymorphism
f of order at least three which has the near-unanimity property, namely
that

f(u, u, . . . , u, v) = f(u, u, . . . , v, u) = · · · = f(v, u . . . , u, u) = u,

for all vertices u, v. In particular, a majority polymorphism is a polymor-
phism f of order three satisfying f(u, u, v) = f(u, v, u) = f(v, u, u) = u
for all u and v. Clearly, any near-unanimity polymorphism is inclusive in
each position. Near-unanimity polymorphisms are fairly common [134, 22].
For instance, if H is a digraph (structure with one binary relation) whose
underlying undirected graph is a path, then H admits a simple majority
polymorphism - namely f(u, v, w) being the middle of the vertices u, v, w
on the path. It is a simple exercise to verify that this definition (which
clearly satisfies the majority property) yields a polymorphism of H; we
simply check that in all cases when uu′, vv′, ww′ are arcs of H, the middle
vertices f(u, v, w)f(u′, v′, w′) also form an arc of H. For another example,
consider the MAJORITY operation on Boolean tuples, defined just above
Theorem 2.2. It is easy to check that MAJORITY defines a polymorphism
(and hence a majority polymorphism) on H if and only if each Si is closed
under MAJORITY. The following result goes back to at least 1993 [73]; cf.
also [118].

Theorem 3.6 [73] If H admits a near-unanimity polymorphism, then CSP(H)
is polynomial time solvable.
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According to the above example, we have the following non-trivial con-
sequence.

Corollary 3.7 [92] If H is a digraph such that the underlying undirected
graph of H is a path, then the H-colouring problem is polynomial time
solvable.

Before leaving this topic, we shall mention two other kinds of Taylor
polymorphisms that are known to imply polynomial time algorithms. A
Maltsev polymorphism is a polymorphism f of order three which satisfies
f(u, u, v) = f(v, u, u) = v for all vertices u, v. A semilattice polymorphism is
a polymorphism f of order two which satisfies f(u, u) = u, f(u, v) = f(v, u),
and f(a, f(b, c)) = f(f(a, b), c), for all vertices u, v. A semilattice polymor-
phism is clearly inclusive in each position; to see that a Maltsev polymor-
phism is inclusive in the second position consider the identity f(u, u, v) =
f(v, v, v). Recall our Boolean polymorphisms OR, AND, XOR, from The-
orem 2.2. If each relation Si in H is closed under OR (respectively AND,
respectively XOR), these operations define a polymorphism of H, which is
semilattice for OR, AND and a Maltsev operation for XOR. It is known that
the existence of either a Maltsev or a semilattice polymorphism on a struc-
ture H ensures that CSP(H) is polynomial time solvable [24, 27]. There is
a recent common generalization of structures with a Maltsev polymorphism
and structures with a near-unanimity polymorphism [39, 17, 115] - these
are structures whose algebra is said to have ‘few subpowers’ [17, 115].

3.3 Weak Near-Unanimity Polymorphisms

The following generalization of near-unanimity polymorphisms has recently
been proved to be particularly fruitful.

A weak near-unanimity polymorphism is an idempotent polymorphism
which satisfies

f(u, u, . . . , u, v) = f(u, u, . . . , v, u) = · · · = f(v, u . . . , u, u),

for all vertices u, v.
Even though weak near-unanimity polymorphisms seem only slightly

weaker than near-unanimity polymorphisms, it was recently proved by Mároti
and McKenzie that not having one implies intractability.

Theorem 3.8 [142] If H admits no weak near-unanimity polymorphism,
then CSP(H) is NP-complete.
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This suggests another very attractive form of a possible dichotomy clas-
sification (to be compared with Theorem 3.6.

Conjecture 3.9 [142] If H admits a weak near-unanimity polymorphism,
then CSP(H) is polynomial time solvable.

Theorem 3.8 has important applications, for instance, to the proof of
Conjecture 2.4.

Theorem 3.10 [15] Suppose H is a core digraph with all indegrees and
outdegrees positive. If each component of H is a directed cycle, then the
digraph H-colouring problem is polynomial time solvable; otherwise it is
NP-complete.

The authors have shown that if H has a component which is not a
directed cycle, then it cannot have a weak near-unanimity polymorphism.

3.4 Fibre Gadgets

We now turn to a discussion of combinatorial approaches, which are simple
enough to describe in full.

This is the first combinatorial approach, and perhaps the simplest one.
It proves the NP-completeness of a concrete problem CSP(H) directly, by
constructing a single gadget for a reduction from 3-colourability. The gadget
itself of course depends on H, but otherwise the construction is simple and
uniform.

We will often define sets of indexed vertices such as W ∗ = {w∗
1 , . . . , w∗

d}.
A copy W a of the set W ∗ will mean the set W a = {wa

1 , . . . , wa
d}. Given

two copies W a and W b of the same set W ∗ we say that we identify W a and
W b index-wise to mean we identify the vertices wa

i and wb
i for i = 1, . . . , d.

When we define a function f on W ∗, we will assume it to be defined on
any copy W a of W ∗ by f(wa

α) = f(w∗
α) for all α = 1, . . . , d. We refer to a

function f on an set W ∗ as a pattern of W ∗. In the case that the image
of f is contained in the vertex set of some structure H we speak about
H-pattern of W ∗. We will often describe H-patterns of W ∗ explicitly as
vectors of elements of H. For example:

f({w∗
1 , w∗

2 , w∗
3 , w∗

4}) = (h, h, h′, h),

for h, h′ ∈ V (H). Moreover, patterns will often be denoted by capital
letters such as P , so one will see P as a function.

21



Let H be a core relational structure. An instance M of CSP (H) is
called a K3-partition if V (M) contains two disjoint copies W 1 and W 2 of
some set W ∗ of indexed vertices, and there are three disjoint sets ¶1,¶2,¶3

of H-patterns of W ∗ such that the following properties are met.

1. Under every H-colouring φ of M , φ|W 1 and φ|W 2 are in different sets
in {¶1,¶2,¶3}.

2. There are representative H-patterns P1, P2, and P3 of ¶1,¶2, and ¶3

respectively such that for every choice of i 6= j ∈ {1, 2, 3} there is an
H-colouring φij of M for which φij |W 1 = Pi and φij |W 2 = Pj .

If H has a K3-partition, it is called K3-partitionable.
The following theorem and corollary are the main results of [165].

Theorem 3.11 (Fibre construction) [165] Suppose H is a core relational
structure. If H has a K3-partition, then CSP(H) is NP-complete.

Proof. Let M be a K3-partition of H, and let G be any instance of
CSP (K3). We construct an instance M(G) of CSP (H) as follows.

1. For each vertex v of G let W v be a copy of W ∗.

2. For each edge e = {u, v} of G let Me be a copy of M . Identify,
index-wise, Wu and W v with W 1 and W 2 of Me respectively.

Thus M(G) consists of |V (G)| copies of W ∗ and |E(G)| copies of M . All
vertices are distinct unless identified above.

Observe that this is not the amalgamation of M and G which is often
used in indicator constructions. In fact, for a given copy W v of W ∗ in M(G)
that has been identified with copies of W 1 and W 2 from different copies of
M , W v induces the union of the edges induced by W 1 and W 2.

We now show that G → K3 ⇐⇒ M(G) → H. Since the construction
of M(G) is polynomial in |V (G)|, this will prove the theorem.

Accordingly, in this case, the complementary conjecture would take the
following form.

Conjecture 3.12 [165] Suppose H is a core relational structure. If H has
no K3-partition, then CSP(H) is polynomial time solvable.
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In support of such a daring conjecture, let us at least indicate why a pro-
jective relational structure H admits a K3-partition [165]. We may assume,
without loss of generality (see Theorem 3.1) that H has only the identity
automorphism, and let a, b be distinct vertices of H. In the structure H6,
we consider the vertex sets

W 1 = {(a, a, b, b, b, b), (b, b, a, a, b, b), (b, b, b, b, a, a)}

W 2 = {(b, b, a, b, a, b), (a, b, b, b, b, a), (b, a, b, a, b, b)},

and the H-patterns

P1 = (0, 1, 1), P2 = (0, 1, 0), P3 = (0, 0, 1).

One can check that any homomorphism f : H6 → H when restricted to
any of the sets W i coincides with a pattern Pj(i). Furthermore, projectivity
implies that j(i) 6= j(i′) for i 6= i′. Indeed, we know that f is a projection;
if, say, f is the projection on the third coordinate, then f |W 1 = (b, a, b),
while f |W 2 = (a, b, b). On the other hand, the sets W 1 and W 2 have
been constructed so that for any patterns Pj , Pj′ with j 6= j′, there is a
homomorphism (in fact, a projection) f : H6 → H which has pattern Pj on
W 1 and Pj′ on W 2. Thus any projective structure admits a K3-partition.

In a remarkable twist, M. Siggers [187] has very recently succeeded in
modifying this proof to imply Theorem 2.1. This is at present the simplest
proof of the undirected graph dichotomy [104].

We also note here that this K3-partition construction is motivated by
an elegant result of V. Müller [147, 148], which we state here as given in
[106].

Theorem 3.13 (Müller’s Extension Theorem) [147, 148]
Let k, `, t be positive integers, k > 2.
Let A1,A2, · · · ,At be distinct partitions of a finite set A, each with k

(possibly empty) parts. Then there exists a graph G of girth at least ` and
chromatic number k, such that

• A is a subset of V (G),

• G has precisely t k-colourings c1, c2, · · · , ct, and

• the partition associated with the k-colouring ci, restricted to the set A,
is precisely Ai.
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We observe that for t = 1, Müller’s Extension Theorem yields uniquely
colourable graphs without short cycles, answering a question posed by Er-
dos. The theorem has several important applications, and has since been
generalized to H-colourings, being the basis of the so-called Sparse Incom-
parability Lemma [163, 106]. The validity of the Sparse Incomparability
Lemma was characterized on a general level by Nešetřil and Zhu [169]. The
characterization is related to projectivity.

This combinatorial approach to the dichotomy has several pleasing con-
sequences. The reduction implicit in the concept of K3-partitionability is
easily seen to preserve bounded degrees, and can also be shown to preserve
large girth. Thus we were able to derive from the theorem a proof of a
metaconjecture of Feder, Hell, and Huang [62], which states that all homo-
morphism problems which are NP-complete for graphs in general, remain
NP-complete for graphs with bounded degrees, as long as the bound is high
enough. (This also follows from the results of [127].) One can also derive
results related to the problem of Kostochka, Nešetřil, and Smoĺıková, on
problems for graphs with large girth [124].

3.5 Block Projectivity

This constitutes the second combinatorial approach to dichotomy classifica-
tion. As projectivity alone does not fully capture all NP-complete instances,
the authors of [165] first introduced a new notion of subprojectivity as a can-
didate classifier. Since this turned out still not to be sufficient [141], the
authors extended it [164] to the following notion of block projectivity.

A pair a, b of vertices of H is block projective if there exist disjoint sets
Ha,Hb ⊂ V (H) (called blocks), such that the following is true. For any
polymorphism φ : Hd → H of H, there is an integer i, 1 ≤ i ≤ d, such that

φ ((s1, . . . , sd)) ∈ Hsi ,

for any (s1, . . . sd) ∈ {a, b}d.
A relational system is block projective if it is a core and contains a block

projective pair.
One can prove the following result.

Theorem 3.14 [164] If a structure H is block projective, then CSP(H) is
NP-complete.

This in turn leads to the following conjecture.
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Conjecture 3.15 [164] If a structure H is not block projective, then CSP(H)
is polynomial time solvable.

We note that it is known [139] that almost all large structures are pro-
jective and hence block projective. However, to prove the block projectivity
of a particular structure H is another matter. For non-bipartite graphs,
this was recently achieved in [187], as a byproduct of a recent new proof of
Graph Dichotomy, Theorem 2.1.

3.6 An Analytic Approach

Recently, a new approach to the CSP dichotomy was proposed by G. Kun
and M. Szegedy. In these notes, we only offer a hint of the main ingredients
of this new approach, based on dynamic systems and probability measures,
in a way resembling the Fourier analytic techniques used in the PCP theorem
[4, 45, 174].

Let X be a finite set, k a positive integer, and f a function Xk → X.
Iterated functions f (i) are defined recursively by f (1) = f and

f (i+1) = f (i)(f, f, . . . , f).

Given two probability measures µ and ν on X, the variational distance
between µ and ν is defined as

δ(µ, ν) =
1
2

∑
x∈X

|µ(x)− ν(x)|.

If µ1, µ2, . . . , µk are probability measures on X, we denote by f(µ1, µ2, . . . , µk)
the measure on Xk defined by the composition of f and the µi’s. The key
notion of the Kun-Szegedy approach is the notion of asymptotic resilience
[128].

A function f : Xk → X is asymptotically resilient if for every measure
µ on X, positive integer `, and positive ε, there exists a constant i0, such
that for all i ≥ i0 we have

δ(f (i)(µ, µ, . . . , µ), f (i)(µ1, µ2, . . . , µk)) < ε,

for any measures µ1, µ2, . . . , µk with support contained in the support of µ,
such that at most ` of them are different from µ.

Theorem 3.16 [128] A polymorphism is a weak near unanimity polymor-
phism if and only if it is asymptotically resilient.
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Corollary 3.17 If H does not admit an asymptotically resilient polymor-
phism, then CSP(H) is NP-complete.

Accordingly, we obtain the following conjecture.

Conjecture 3.18 [128] If H admits an asymptotically resilient polymor-
phism, then CSP(H) is polynomial time solvable.

G. Kun and M. Szegedy also re-derive Theorem 2.1, illustrating their
techniques; specifically, they prove that a non-bipartite graph without loops
does not admit an asymptotically resilient polymorphism. This is a new and
very different approach, in which they apply the characterizations of large
independent sets in graph products, due to Dinur, Friedgut, and Regev [46].
In this sense, this approach is also related to a weaker form of projectivity;
of course the details of [128, 46] are much more involved. As a whole this
represents a very elegant and original approach to the dichotomy problem,
and one building on the experience of other developments in theoretical
computer science, long code testing, PCP theorem, and dynamical systems.

3.7 Equivalence of Conjectures

Surprizingly, all the various dichotomy conjectures turn out to be mutually
equivalent.

Theorem 3.19 For an idempotent relational structure H, the following
statements are equivalent:

• the algebra (V (H),Pol(H)) has a non-trivial divisor in which all op-
erations are projections;

• H has no Taylor polymorphism;

• H has no weak near unanimity polymorphism;

• H is a block projective relational structure;

• H is K3-partitionable;

• H has no asymptotically resilient polymorphism.

In these cases CSP (H) is NP -complete.
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This easily stated theorem is a culmination of several results.
In [28], Bulatov and Jeavons show that an idempotent algebra B has a

non-trivial divisor all of whose term operations are projective if and only
if, in the language of tame congruence theory, the variety generated by B
admits type one. The relation to Taylor operations is developed in [135]. In
[142], it is shown that this is true if and only if B admits no weak unanimity
term operation. The equivalence of the asymptotic resilience is proved in
[128].

Perhaps most surprisingly, the equivalence of these algebraic notions
with the existence of K3-partitions and block projectivity is proved recently
in [164].

Corollary 3.20 All the conjectures 3.3, 3.5, 3.9, 3.12, 3.15, and 3.18 are
equivalent.

The fact that such a variety of different formulations all turn out to
be equivalent, lends clear support to the current version of the dichotomy
conjecture, which is simply that all other problems CSP(H) are polynomial
time solvable.

4 Duality

Consider the problem CSP(H). What can be better than a characterization
by a finite set of obstructions? Surely having such a characterization is
a desirable goal, but is it realistic, and with interesting instances? It is
reasonable to be skeptical, as for undirected graphs, the answer is negative
[162], i.e., there are only trivial instances of finite obstruction theorems.

However the properties characterized by a finite set F of obstructions are
very interesting if we consider them for more complicated structures than
undirected graphs only. The evidence from Section 2.1 shows that by means
of lifts and shadows, forbidden homomorphisms from finitely many struc-
tures suffice to capture the entire class NP. In this section we complement
this by considering CSP problems defined by finitely many obstructions.
Towards this end we define the notion of finite (homomorphism) duality.

Let F , D be finite sets of structures (of type t). We say that sets F and
D establish finite duality if the following holds for every structure A of type
t.

F 6−→ A for every F ∈ F ⇐⇒ A −→ D for some D ∈ D.
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The term duality refers to the fact that we are describing the struc-
tures which admit homomorphisms to H dually, by means of forbidden
subobjects. This is particularly fitting in the language of category theory
[106, 150].

In this case we say that (F ,D) is dual pair, and that D is dual set of F .
The simplest non-trivial instance of dualities is for oriented graphs and

it is usually expressed in terms of orientations of graphs. The connection
between chromatic number and orientations goes back to Gallai and Roy
[79, 176]. These pioneering works provided a name for the result although
both of these papers were anticipated by M. Hasse [94] and L. M. Vitaver
[177], where the same result is proved (in the more algebraic language).
For our purposes the Gallai-Hasse-Roy-Vitaver result takes the following
compact form.

Theorem 4.1 For any directed graph G the following holds:

Pk 6→ G ⇐⇒ G → Tk

Here Pk denotes the directed path of length k (i.e. with k + 1 vertices),
and Tk denotes the transitive tournament with k vertices.

It may be seen easily that for undirected graph this has the following
consequence.

Corollary 4.2 [103, 106] For an undirected graph G the following state-
ments are equivalent:

1. χ(G) ≤ k (which is equivalent to G → Kk);
2. There exists an orientation ~G of G such that ~G → Tk;
3. There exists an orientation ~G of G such that Pk 6→ ~G.

This particular result was one of the starting points ([162]) for the fol-
lowing result which characterizes homomorphisms duality in classes [168].
First we state the theorem for singleton sets only:

Theorem 4.3 (Singleton Homomorphism Dualities) [168]
1. For every relational tree T there exists a structure DT (called the dual

of T ) such that the following holds (for every structure A):

T 6→ A ⇐⇒ A → DT .

2. Up to a homomorphism equivalence there are no other dual pairs (of
singleton structures).
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The characterization of singleton dualities is the basis of the character-
ization of dual pairs of sets and of finite dualities:

Theorem 4.4 (Finite Homomorphism Dualities) [168, 77]
1. For every finite set of relational trees T there exists a dual set of

structures DT such that the following holds (for every structure A):

T 6→ A ⇐⇒ A → DT .

2. Up to a homomorphism equivalence there are no other dual pairs (of
singleton structures).

(Here we write T 6→ A if T 6→ A for every T ∈ T . Similarly, we write
A → DT if A → D for every D ∈ DT .)

These theorems are nontrivial in both directions and the existence of
duals is non-trivial. In a certain sense the duals are well understood. This
can be illustrated by the fact that there are several constructions of dual
objects by means of

• explicit construction, [166, 167];

• construction using the connection between gaps (in the homomo-
prhism order) and dualities, [168];

• deletion method using lifts and shadows [152];

• generic method using shadows of universal structures, [112].

Let us remark that for a tree T the dual structure DT may have a size
exponential in the size of T [166, 167], yet to decide whether a given core
graph G is a dual of a tree T can be decided polynomially, [133].

It has been also proved that finite dualities correspond exactly to those
Constraint Satisfaction Problems which are first order (FO) definable. This
follows by a combination of results [168, 77] and [5] (and also [175]). For
further reading on this subject we refer to [152, 30].

4.1 Restricted Duality

Finite dualities correspond to first order CSP’s. Finite dualities become
much more abundant if we demand the validity of the duality formula
just for all graphs from a given class K. In such a case we speak about
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K-restricted duality, defined as follows. We say a class of structures K
admits all restricted dualities if, for any finite set of connected graphs
F = {F1, F2, . . . , Ft}, there exists a finite structure DK

F such that Fi 6−→ DK
F

for i = 1, . . . , t and for all G ∈ K,

(Fi 6−→ G), i = 1, 2, . . . , t, ⇐⇒ (G −→ DK
F ). (1)

Any instance of (1) is called a restricted duality (for the class K).
To motivate this definition let us consider the following example.
The Grötzsch’s celebrated theorem (see e.g. [189]) says that every

triangle-free planar graph is 3-colorable. In the language of homomorphisms
this says that for every triangle-free planar graph G there is a homomor-
phism of G into K3. Using the partial order terminology, Grötzsch’s theorem
says that K3 is an upper bound (in the homomorphism order) for the class
P3 of all planar triangle-free graphs. The fact that K3 6∈ P3 suggests a
natural question (first formulated in [150]): is there yet a smaller bound?

The answer, which may be viewed as a strengthening of Grötzsch’s the-
orem, is positive [154],[155]: there exists a triangle free 3-colorable graph H
such that G −→ H for every graph G ∈ P3. One can view these results as
restricted dualities (which hold in the class of planar graphs). Restricted
duality results have since been generalized not only to proper minor closed
classes of graphs and but also to other forbidden subgraphs, in fact to any
finite set of connected graphs thus yielding all restricted dualities for the
class of planar graphs[156]. This then implies that Grötzsch’s theorem can
be strengthened by a sequence of even stronger bounds and that the supre-
mum (in the homomorphism order) of the class of all triangle free planar
graphs does not exist, [153].

What is the proper setting for the restricted dualities? This is presently
an open problem but the strongest result in this direction is the notion of
a class with bounded expansion. Such a class may be defined in several
(very) different ways, see [158, 159, 160]. Here we selected the perhaps the
most intuitive definition (and chronologically the first definition) by means
of densities of shallow minors of graphs ([158]):

The maximum average degree mad(G) of a graph G is the maximum
over all subgraphs H of G of the average degree of H, that is mad(G) =
maxH⊆G

2|E(H)|
|V (H)| . The distance d(x, y) between two vertices x and y of a

graph is the minimum length of a path linking x and y, or ∞ if x and y
do not belong to same connected component. Also we denote by G[A] the
subgraph of G induced by a subset A of its vertices.
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We introduce several notations:

• The radius ρ(G) of a connected graph G is:

ρ(G) = min
r∈V (G)

max
x∈V (G)

d(r, x)

• A center of G is a vertex r such that maxx∈V (G) d(r, x) = ρ(G).

Let G be a graph. A ball of G is a subset of vertices inducing a connected
subgraph. The set of all the families of pairwise disjoint balls of G is noted
B(G).

Let P = {V1, . . . , Vp} be a family of pairwise disjoint balls of G.

• The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X]).

• The quotient G/P of G by P is a graph with vertex set {1, . . . , p} and
edge set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩ Vj = ∅}.

The following invariants generalize maximum average degree. The great-
est reduced average density (grad) of a graph G with rank r is

∇r(G) = max
|E(G/P)|

|P|
.

where maximum is taken over all P ∈ B(G) satisfying ρ(P) ≤ r.
Finally, here is our key definition.
A class of graphs C has bounded expansion if there exists a function

f : N → N such that for every graph G ∈ C and every r,

∇r(G) ≤ f(r). (2)

f is called the expansion function.
The definition of bounded expansion can be carried over to general struc-

tures by means of incidence graphs. (In most cases this is equivalent to
considering 2-section which is in the logical context usually called Gaifman
graph.) Thus we may speak about classes of structures with bounded ex-
pansion.

After this the main result can be briefly stated.

Theorem 4.5 [156, 160] Any class of structures with bounded expansion
has all restricted dualities.
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By a combination of various results in model theory (so called homo-
morphism preservation theorem) it has been recently showed that every
restriction of a homomorphism closed class defined by an FO formula to a
bounded expansion class is induced by a duality, [161]. It follows that every
restriction of a homomorphism closed class defined by an FO formula to a
bounded expansion class is a restriction of a CSP problem.

5 Conservative Structures and List CSP’s

A relational structure H is conservative if each subset U ⊆ V (H) is a unary
relation in H. What this means, is that the input structures G have all
possible unary relations U ′, each corresponding to a subset U of V (H).
Imposing U ′ on a vertex v ∈ V (G) amounts to restricting its image to be
in the corresponding set U ⊆ V (H). Thus we may equivalently view the
structures G, H without these unary relations but with each vertex v of G
being equipped with a list L(v) ⊆ V (H) of allowed images in H. In other
words, a list homomorphism of G to H is a homomorphism f of G to H such
that f(v) ∈ L(v) for each vertex v of G. A List CSP(H) is the problem
CSP(H) in which inputs G are structures of the same type as H whose
vertices are moreover equipped with list; and we seek a list homomorphism
to H.

The first result about dichotomy of list CSP’s [55] dealt with the case
when H has one relation, E(H), which is binary, symmetric, and reflexive.
In other words, H is a reflexive undirected graph (each vertex has a loop).
In this case, the dichotomy takes on the following attractive form.

Theorem 5.1 (Reflexive Graph List Dichotomy) [55] Suppose H is a re-
flexive undirected graph. Then List CSP(H) is NP-complete, except when H
is an interval graph, in which case List CSP(H) is polynomial time solvable.

An interval graph is a graph H whose vertices can be associated with
real intervals so that two vertices are adjacent in H if and only if the cor-
responding intervals intersect. Similarly, a circular arc graph is a graph H
whose vertices can be associated with arcs on a circle so that two vertices
are adjacent in H if and only if the corresponding arcs intersect. The next
result [60] classifies the complexity of List CSP(H) when H is an irreflexive
undirected graph (no vertex has a loop).

Theorem 5.2 [60] Suppose H is an irreflexive undirected graph. Then List
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CSP(H) is NP-complete, except when H is a bipartite graph and H is a
circular arc graph, in which case List CSP(H) is polynomial time solvable.

For general undirected graphs, where vertices may have loops or not,
we have the following unified statement [61]. Bi-arc graphs are defined
in [61]; they include the reflexive interval graphs as well as the bipartite
complements of circular arc graphs from the previous two theorems.

Theorem 5.3 [61] Suppose H is an undirected graph. Then List CSP(H)
is NP-complete, except when H is a bi-arc graph, in which case List CSP(H)
is polynomial time solvable.

Bi-arc graphs are shown to be precisely the graphs with a near-unanimity
polymorphism in [22], and have recently been shown also precisely the
graphs with a Taylor operation [48]. (The latter fact confirms Conjecture
3.5 for conservative structures that are graphs.)

These results have inspired the following dichotomy result for conser-
vative structures [23]. We state the result in the context of list CSP’s as
follows.

Theorem 5.4 (Conservative Dichotomy) [23] For any relational structure
H, the problem List CSP(H) is NP-complete or polynomial time solvable.

For a given structure H, the proof of [23] gives an algorithm to de-
cide whether CSP(H) is NP-complete or polynomial time solvable. It is
polynomial time solvable when H admits, for each pair of vertices u, v, a
polymorphism f such that the restriction of f to tuples of u’s and v’s is a
majority operation, a semilattice operation, or a Maltsev operation.

By comparison, the algorithms inherent in the previous three theorems,
classifying the complexity of list CSP’s for undirected graphs, are efficient
low degree polynomial time algorithms [83]. Moreover, they are elegantly
characterized by forbidden substructures [83]. It would be desirable to have
similar concrete dichotomy classifications for other list CSP problems, at
least in the case when H is a digraph. In [63] we proposed the following
conjecture (earlier versions appeared in [69, 98]).

Conjecture 5.5 [63] Suppose H is a reflexive digraph. Then List CSP(H)
is NP-complete, except when H is an adjusted interval digraph, in which
case list CSP(H) is polynomial time solvable.
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An adjusted interval digraph is a digraph H whose vertices v can be asso-
ciated with pairs of real intervals Iv, Jv with the same left endpoint, so that
v → w if and only if Iv intersects Jw. (Ordinary interval digraphs have been
investigated by West and others [186]; they are defined analogously but do
not require each Iv, Jv to have the same left endpoint.) The authors of [63]
have recently succeeded in obtaining a forbidden structure characterization
of adjusted interval digraphs, and a polynomial time algorithm for their
recognition [63]. It is hoped that it will allow us to prove Conjecture 5.5;
we have already done this for reflexive digraphs whose underlying graphs
are trees and complete graphs. Furthermore, the conjecture also holds for
triangle-free graphs [131]. (We also refer the reader to [69].)

The Conservative Dichotomy classification of list CSP’s suggests the
importance of majority, Maltsev, and semilattice polymorphisms. For the
examples discussed above, the role of semilattice polymorphisms is most
important, and it can be replaced in this context by the min polymorphism,
which is a polymorphism f of order two such that there exists a linear
ordering of V (H) in which f(u, v) = min(u, v). (An X-underbar enumer-
ation of a digraph H is an ordering of its vertices as v1, v2, . . . , vn such
that whenever the arcs vivj and vi′vj′ are in H, then the arc vi′′vj′′ , with
i′′ = min(i, i′), j′′ = min(j, j′), is also in H. It is clear from these defini-
tions that a digraph admits a min polymorphism if and only if it admits an
X-underbar enumeration.)

In particular, for reflexive graphs and digraphs we have the following
easy observations.

Proposition 5.6 A reflexive graph H is an interval graph if and only if it
admits a min polymorphism.

Proposition 5.7 A reflexive digraph H is an adjusted interval digraph if
and only if it admits a min polymorphism.

Thus for reflexive structures H the problem List CSP(H) seems polyno-
mial if and only if H admits a min polymorphism. For irreflexive structures,
the situation is much more complicated, and the full range of the possibili-
ties identified by Bulatov in [23] is possible [68]. (In particular, [68] shows
that this is contrary to what was proposed as Conjecture 6.2 in [69] and the
Conjecture 3.5 in [98]; this was independently observed by C. Carvalho.)
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5.1 Retraction and Extension Problems

The retraction problem (or the precolouring extension problem) is a classi-
cal constraint satisfaction (or homomorphism) problem, which can be seen
as a list constraint satisfaction problem in which the lists are restricted to
be either singletons (the vertices with singleton lists are essentially “pre-
coloured”, or equipped with unary relations Rv = {(v)}, as in the con-
struction of idempotent H ′ in Proposition 3.1), or the entire set V (H) (the
vertices with lists V (H) are essentially unrestricted). Alternately, if H is a
substructure of G, and if the lists of each vertex v ∈ V (H) is {v} while all
other lists are V (H), then we seek a homomorphism f of G to its substruc-
ture H such that f(h) = h for all h ∈ V (H). Such homomorphisms are
called retractions and they have been of interest since Borsuk studied them
in the context of topological spaces [20, 95, 116, 97, 135, 170, 173]. There has
been a lot of interest in retraction problems in graphs and other relational
structures [8, 9, 10, 42, 16, 52, 59, 96, 109, 113, 114, 131, 143, 170, 184].

Of particular interest has been the class of reflexive graphs H for which
the retraction of any supergraph G only depends on H being an isometric
subgraph of G. (In other words, if the distances in H are not shortcut
in G, then H is a retract of G.) Of course, is this condition is satisfied,
then retraction to H can be tested in polynomial time. Many results about
these ‘absolute retracts’ can be found in [95, 116, 97, 170, 173, 109, 10],
and are discussed in detail in [106]. A larger class of reflexive graphs with
polynomial time solvable retraction problems would be the class in which
the non-existence of a retraction is first order (FO) definable. It has recently
been proved by Dalmau, Krokhin, and Larose, that a reflexive graph has an
FO definable retraction problem if and only if it is connected and admits a
near-unanimity polymorphism [41]. (A similar result holds also for partial
orders.)

Many other partial results on dichotomy of retraction problems, espe-
cially in the context of graphs, digraphs, and partial orders, can be found
in [8, 9, 10, 59, 55, 60, 131, 170]; nevertheless, dichotomy is not known
for all retraction problems, and it was shown by Feder and Vardi [73] that
dichotomy for retraction problems when H− is a graph (or even a bipar-
tite graph, or a graph with some other properties) would imply the entire
Dichotomy Conjecture. On the other hand, there seems to be hope of char-
acterizing graphs (or at least reflexive graphs) H for which the following
subretraction problem has a polynomial solution: given a graph G with lists
restricted to be either singletons, or a fixed set S ⊆ V (H), decide if there
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exists a list homomorphism of G to H [59].

6 Minimum Cost and Soft CSP’s

We have observed earlier that each List CSP(H) is equivalent to some
CSP(H ′), where H ′ is obtained from H by the addition of all unary con-
straints. On the other hand, every problem CSP(H) can be viewed as a
restriction of the corresponding problem List CSP(H), where the inputs G
have all lists L(v) equal to the entire vertex set of H. In turn, List CSP(H)
is a restriction of the following optimization problem MinCost CSP(H).
The input to the problem MinCost CSP(H) is a structure G of the same
type as H, together with “costs” cv(x) for all x ∈ V (G) and v ∈ V (H),
and a target cost K. The cost of a homomorphism f : G → H is the sum∑

x∈V (G) cf(x)(x). The problem is to decide if there exists a homomorphism
of G to H of cost at most K.

The problem MinCost CSP(H) was introduced in [90] (for undirected
graphs), where it was motivated by a real-world problem in defence logis-
tics. We believe it offers a practical and natural model for optimization of
weighted homomorphisms. Each problem List CSP(H) is a restriction of the
corresponding problem MinCost CSP(H), where the inputs have ci(u) = 0
if i ∈ L(u), and ci(u) = 1 otherwise (and K = 0).

Thus the unary constraints (which we viewed as lists) are no longer hard
in this model: a vertex v can map to any vertex but at different costs. In
this sense, the unary constraints have become ‘soft’. One can define a more
general model where all constraints are ‘soft’ [36].

Specifically, suppose H is a relational structure which is complete, in
the sense that each of its relations Si, i = 1, . . . , p, is equal to V (H)si .
(Recall that si is the arity of the relation Si.) Suppose we additionally
have, for each i = 1, . . . , p, a set Fi of real-valued functions on Si. The
structure H, together with the sets Fi is fixed. The problem Soft CSP(H)
has inputs consisting of a structure G of the same type as H, with relations
Ri, i = 1, . . . , p, and functions fi : Ri → Fi, i = 1, . . . , p, together with
a target cost K. The question is whether or not there exists a mapping
f : V (G) → V (H) for which the sum over all i = 1, . . . , p and over all
si-tuples t ∈ Ri, of fi(t)(f(t)) does not exceed K. (Here f(t) denotes
the coordinatewise evaluation of t, i.e., if t = (t1, t2, . . . , tsi), then f(t) =
(f(t1), f(t2), . . . , f(tsi

)).)
It is again not difficult to see that each MinCost CSP(H) is a restriction
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of a corresponding Soft CSP(H) (where only 0-1 functions of Si are allowed
in Fi and K = 0). Thus the hierarchy of consecutive generalizations goes
from CSP(H) to List CSP(H), to MinCost CSP(H), and to Soft CSP(H).

The following dichotomy for Soft CSP(H) where H are binary structures
was proved in [36]. Note that it applies, in particular, to digraphs.

Theorem 6.1 [36] Suppose H is a relational structure with only unary and
binary relations. If all binary functions in all sets Fi, i = 1, . . . , p are sub-
modular, then Soft CSP(H) is polynomial time solvable.

Otherwise, the problem Soft CSP(H) is NP-complete.

We now discuss MinCost CSP(H) where H is a graph or a digraph.
Since MinCost CSP’s are restrictions of ‘soft’ CSP’s, some NP-complete Soft
CSP’s may become polynomial time solvable in the MinCost version. (Thus
Theorem 6.1 does not imply dichotomy for MinCost CSP’s for digraphs.)

For undirected graphs (with possible loops) we have the following di-
chotomy classification for MinCost CSP(H).

Theorem 6.2 [88] Let H be any graph. If each component of H is a reflex-
ive proper interval graph or an irreflexive proper interval bigraph, then the
problem MinCost CSP(H) is polynomial time solvable. In all other cases,
the problem MinCost CSP(H) is NP-complete.

A proper interval graph is a graph H whose vertices can be associated
with an inclusion-free family of real intervals so that two vertices are ad-
jacent in H if and only if the corresponding intervals intersect. An proper
interval bigraph is a bipartite graph H (with a fixed two-colouring) whose
vertices can be associated with two inclusion-free families of real intervals
(one for each colour class of H) so that two vertices of opposite colour in H
are adjacent in H if and only if the corresponding intervals intersect.

What distinguishes the reflexive proper interval graphs and the irreflex-
ive proper interval bigraphs is the fact that they admit so-called min-max
orderings. A linear ordering < of V (H) is a min-max ordering if i < j, s < r
and ir, js ∈ A(H) imply that is ∈ A(H) and jr ∈ A(H). (These are sub-
modular flows [36].) These play for minimum cost homomorphisms the role
played by min polymorphisms in list CSP’s. Min-max orderings are directly
related to supermodular functions, which have been identified in Theorem
6.1 as the reason for polynomiality of soft CSP’s, cf. [36, 125, 43]. (They
are also a particular kind of multimorphism [36].)
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There has also been much activity for digraphs, where the situation is
more complicated [89, 91, 85, 86, 87]. In particular, there are polynomial
time solvable MinCost CSP’s which do not admit a min-max ordering [89],
and hence are not covered by a polynomial case of Soft CSP(H). Here we
just describe one recent dichotomy - for reflexive digraphs [85]. It turns out
that in this case the polynomial cases are exactly those covered by min-
max orderings. The key to proving the dichotomy is a forbidden structure
characterization of the class of reflexive digraphs H admitting a min-max
ordering. The characterization also implies a polynomial time recognition
algorithm for the class. One economical way to describe the class is to
use two undirected graphs associated with each digraph H - the symmetric
graph S(H) which has V (S(H)) = V (H) and uv ∈ E(S(H)) just if uv ∈ H
and vu ∈ H, and the associated bipartite graph B(H) with V (B(H)) =
V (H)× {0, 1} in which (u, 0)(v, 1) ∈ E(B(H)) just if uv ∈ H.

Theorem 6.3 [85] Let H be a reflexive digraph H. If

• S(H) is a proper interval graph, and

• B(H) is a proper interval bigraph, and

• H does not contain an induced subgraph isomorphic to Hi with i =
1, 2, 3, 4, 5, 6,

then H admits a min-max ordering and mincost CSP(H) is polynomial
time solvable.

Otherwise, mincost CSP(H) is NP-complete.

7 Full CSP’s

Consider the relational structure H with V (H) = {0, 1, 2} with three sym-
metric binary relations S0, S1, S2 where Si = [V (H) × V (H)] − (i, i). The
problem CSP(H) takes as input structures G with three binary relations
R0, R1, R2 (which can be assumed without loss of generality to be symmet-
ric as well). It is not difficult to prove that CSP(H) is NP-complete, i.e., it
is NP-complete to decide if input G admits a homomorphism to H.

The situation changes drastically if we restrict the inputs to structures
G in which the union of the relations R0, R1, R2 contains all pairs of dis-
tinct vertices of G. (Such a structure is called 2-full [56].) Without go-
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Figure 1: The obstructions Hi with i = 1, 2, 3, 4, 5, 6.
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ing into details [56], we shall informally call a full CSP any CSP(H) re-
stricted to instances in which the union of all relations of certain spec-
ified arities is complete. In this section we focus on 2-full CSP’s. The
first kind of 2-full CSP’s, illustrated in the first example, has H consist of
V (H) = {0, 1, . . . , k−1} and k symmetric binary relations S0, S1, . . . , Sk−1,
where Si = [V (H)× V (H)]− (i, i). The inputs G are restricted to have re-
lations R0, R1, . . . , Rk−1 whose union contains all distinct pairs of vertices.
For simplicity, let us further assume that the relations R0, R1, . . . Rk−1 are
also disjoint. (This turns out not to be a real restriction [56].) We call this
the compatible k-colouring problem [56]. It can be restated as follows.

Given a complete graph G whose edges are coloured by 0, 1, . . . , k − 1,
decide if G admits a compatible vertex colouring of G by colours 0, 1, . . . , k−1
so that no edge e = uv of G has the same colour on e, u,, and v.

The compatible 2-colouring problem has a nice solution. Indeed, a com-
plete graph G with edges coloured 0, 1 may be viewed as just an ordinary
graph (by taking the edges of colour 0 to be absent); thus the problem has
become one of partitioning the vertices of G into two sets, those coloured
0 - which must form a clique - and those coloured 1 - which must form
an independent set. Graphs G which admit such a partition are called split
graphs [83] and can be recognized in linear time. (In fact G is a split graph if
and only if it is chordal and contains no induced 2K2 [83].) This also works
in the presence of lists. as the addition of lists makes only a very small
difference and both linear time algorithms and forbidden induced subgraph
characterizations still apply [100].

The compatible 4-colouring problem (and similarly for k-colourings with
k > 4) is NP-complete. Indeed, given a graph G, it is easy to construct a
graph G′ with edges coloured 0, 1, 2, 3, which can be compatibly coloured
if and only if G is 3-colourable (in the usual sense). It is enough to let G′

consist of two disjoint copies of G with each edge of G replaced by three
parallel edges coloured 0, 1, 2, and colouring all remaining pairs of vertices
by 3. Indeed, any 3 colouring of G (repeated on each copy of G in G′) is
a compatible colouring of G′; and conversely, any compatible colouring of
G′ must not use colour 3 on the vertices of one copy of G (since they are
linked by all edges coloured 3), and hence induce a valid 3-colouring on G.
(Note that the graph G′ has parallel edges, or equivalently, some pairs of
vertices of G are related in several relations. It is not hard to replace these
multiple edges by substituting p independent vertices for each vertex of G,
and joining two independent sets corresponding to a pair of vertices joined
by edges of colours 0, 1, 2, by a complete bipartite graph with edges coloured
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0, 1, 2, so that between any two subsets of at least p/2 vertices there is an
edge of each colour 0, 1, 2. If p is large enough, random colourings have this
property.)

The complexity of the compatible 3-colouring problem is not known. It
is not likely to be NP-complete, because of the following result [56].

Theorem 7.1 [56] There is an nO(log n) algorithm to solve the compatible
3-colouring problem, with lists.

Proof. Initial lists are given, L(v) ⊆ {0, 1, 2}, for all vertices v of G.
(In the problem without lists, we can take all initial L(v) = {0, 1, 2}.) At
each stage, the lists will be reduced, by replacing a problem by a set of
subproblems with smaller lists, until we reach a stage when all lists have at
most two vertices. Such problems can be solved by a standard application
of a two-satisfiability algorithm [6]; indeed choosing an image from a list
of size two represents a Boolean choice, and all constraints are defined over
pairs of vertices, yielding clauses of size two [64].

Let S denote the (changing) set of vertices v with L(v) = {0, 1, 2}. We
say that i is the majority colour at v ∈ S if it occurs on at least a third of
the edges from v to the other vertices of S.

We reduce the current problem to |S| + 1 subproblems as follows. In
the first subproblem, we avoid giving any vertex v ∈ S its majority colour.
This results in all lists of size at most two, and can be tested in linear time.
In the remaining |S| subproblems, we assume for each v ∈ S in turn, that
(at least) v receives its majority colour i; this allows us to remove i from
the list of at least |S|/3 other vertices.

We obtain the recurrence T (s) ≤ (1+sT (2s/3))T2(n), where s = |S| and
T2(n) is the time for solving an instance of two-satisfiability on n variables
and at most n2 clauses. It is easy to see that the solution is T (n) = nO(log n).

No NP-complete problem is known to have an nO(log n) algorithm, and
the nature of polynomial time reductions ensures that if one NP-complete
problem did have such an algorithm, then so would all the others. Thus we
take our result as evidence that the compatible 3-colouring problem is not
likely to be NP-complete. Yet no polynomial time algorithm is known for
the problem. There are better algorithms than the simple example above -
the currently best algorithm has complexity nO(log n/ log log n) [66].
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7.1 Matrix Partitions

Here we discuss another class of 2-full CSP’s, in which H has just two
binary relations [56]. These problems have been studied as so-called matrix
partition problems [64], and can be best formulated as follows.

Let M be a symmetric m by m matrix over 0, 1, ∗. An M -partition of a
graph G is a partition of V (G) into parts V1, V2, . . . , Vm such that for distinct
vertices u ∈ Vi, v ∈ Vj , we have uv ∈ E(G) if M(i, j) = 1, and uv 6∈ E(G)
if M(i, j) = 0. Note that we admit i = j; in particular, if M(i, i) = 0,
the set Vi is independent in G, and if M(i, i) = 1, it is a clique. Also
note that ∗ means no restriction. For each fixed matrix M we obtain the
M -partition problem - to decide whether or not a given graph G admits an
M -partition. For instance, if Cm is the matrix in which the diagonal entries
are 0 and all other entries are ∗, then the Cm-partition problem asks whether
or not the graph G is m-colourable, in the usual sense. Many other graph
partition problems, especially those arising in the study of perfect graphs
[33, 34, 64]), can be formulated as matrix partition problems; these include
problems such as deciding the existence of a clique cutset, or a skew cutset
[34, 188], and so on [33]. Take, for instance, the problem of recognizing
split graphs [76]. These are precisely the M -partitionable graphs where M
is the two by two matrix with rows 0* and *1. For this problem there is
a well-known polynomial time recognition algorithm and a characterization
by forbidden induced subgraphs - G is partitionable (is a split graph) if and
only if it does not have an induced 2K2, C4, C5 [76]. Similarly, complete
bipartite graphs are precisely the M -partitionable graphs where M is the
two by two matrix with rows 01 and 10. In this case, it is easy to check
that G is complete bipartite, i.e., M -partitionable, if and only if it does not
have an induced copy of K1 ∪K2.

Thus we may ask, for any given matrix M , whether M -partitionable
graphs be recognized in polynomial time, and whether M -partitionable
graphs be characterized by a finite set of forbidden induced subgraphs.
(The latter case is just finite duality in this context [7].) An intermedi-
ate question might be whether M -partitionable graphs are FO definable
[5, 175, 190]. However, unlike the case of CSP’s it is not known whether
FO definability is equivalent to finite duality.

There are several variants of the basic M -partition problem: these in-
clude partitioning digraphs (the matrix M is not necessarily symmetric)
[69, 180], equipping the vertices of G with lists, or insisting that each part
be nonempty [31, 64, 75, 106], generalizing to certain constraint satisfac-
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tion problems [56], or restricting the input graphs to have special structure
[57, 65, 70, 100, 106].

For the basic problem discussed here, it makes sense to assume that
all M(i, i) 6= ∗. Indeed, if some M(i, i) = ∗, then every graph G is M -
partitionable, and all our questions are trivial. If M has no diagonal ∗, then
we may assume that M(1, 1) = . . . = M(k, k) = 0,M(k + 1, k + 1) = . . . =
M(m,m) = 1. Let A denote the submatrix of M with rows and columns
1, . . . , k; let B denote the submatrix with rows and columns k + 1, . . . ,m;
and let C denote the submatrix with rows 1, . . . , k and columns k+1, . . . ,m.
A matrix which has no ∗ in the submatrices A and B is called friendly.

Theorem 7.2 [190] If M is not a friendly matrix, then M -partitionble
graphs cannot be characterized by a finite set of forbidden induced subgraphs.

We have several classes of friendly matrices M for which M -partitionable
graphs are known to have a characterization by finitely many forbidden
subgraphs. The simplest case occurs when M has no ∗ entries at all.

In [56] we have shown the following fact.

Theorem 7.3 [56] If M has no ∗ entries, then all minimal obstructions to
M -partition have at most (k + 1)(m−k + 1) vertices (and there are at most
two minimal obstructions with precisely (k + 1)(m− k + 1) vertices).

Different proofs of the fact that there are only finitely many minimal
obstructions in this case can also be found in [7] and [190].

We can extend the validity of this result by applying the so-called sparse-
dense technique from [57], cf. [71, 190].

Theorem 7.4 [190] If M is a friendly matrix in which C has only ∗ entries,
then M -partitionable graphs can be characterized by a finite set of forbidden
induced subgraphs.

In certain other cases, while we cannot prove the existence finitely many
forbidden induced subgraphs, we can at least guarantee a polynomial time
algorithm for M -partitionability. We say that M is triangle-free if there do
not exist subscripts i ≤ i′ ≤ i′′ ≤ k with M(i, i′) = M(i, i′′) = M(i′, i′′) =
0, and there do not exist subscripts k < j ≤ j′ ≤ j′′ with M(j, j′) =
M(j, j′′) = M(j′, j′′) = 1.

Theorem 7.5 [190] If M is a triangle-free friendly matrix, then the M -
partition problem is polynomial time solvable.
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Full CSP’s appear less likely to enjoy dichotomy - even for the simple
compatible 3-colouring problem we do not know a polynomial time algo-
rithm. A relative of the compatible 3-colouring problem from [31], called
the stubborn problem, is a list version of an M -partition problem where
the matrix has size only four. For this problem there is an nO(log n) al-
gorithm similar to the one described above for the compatible 3-colouring
problem, but no polynomial algorithm is known. This suggests that prov-
ing dichotomy for all matrix partition problems must be hard - even such a
concrete small problem is causing difficulty. However, it turns out that the
situation does not get any worse.

Let us say that a problem is quasi-polynomial, if it admits an nO(log n)

algorithm [64].

Theorem 7.6 [56] For each matrix M , the list M -partition problem is NP-
complete or quasi-polynomial.

8 Conclusions

The most important open theoretical problem is certainly the Dichotomy
Conjecture. We see this conjecture taking now a much more concrete and
perhaps definitive form, and see hopeful signs that the new tools [29, 128,
142, 165] might be bringing us nearer to its solution. It is worth noting that
while the NP-completeness of CSP’s appears well understood (and seems re-
lated to various forms of projectivity), we are lacking a good understanding
of the polynomial algorithms - which is of course also of practical impor-
tance. Indeed, much of the current research on the Dichotomy Conjecture
amounts to a hunt for new polynomial algorithms.

We are grateful to G. Kun and M. Szegedy, as well as to M. Siggers, for
providing us with early drafts of their papers [128, 187].
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[153] J. Nešetřil, P. Ossona de Mendez, “Cuts and Bounds”, Discrete Math.
302 (2005) 211–224.
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