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Preface

Spring school on Combinatorics has been a traditional meeting organized for
faculty and students participating in the Combinatorial Seminar at Charles
University for nearly 30 years. It is internationally known and regularly vis-
ited by students, postdocs and teachers from our cooperating institutions
in the DIMATIA network. As it has been the case for several years, this
Spring School is generously supported by the Institute of Theoretical Com-
puter Science (ITI) of Charles University and the Department of Applied
Mathematics (KAM) of Charles University.

The Spring Schools are entirely organized and arranged by our undegrad-
uate students. The lecture subjects are selected by supervisors from the
Department of Applied Mathematics (KAM) and Institute for Theoreti-
cal Computer Science (ITI) of Charles University as well as from other
participating institutions. In contrast, the lectures themselves are almost
exclusively given by students, both undergraduate and graduate. This leads
to a unique atmosphere of the meeting which helps the students in further
studies and their scientific orientation.

This year the Spring School is organized in Borová Lada, a mountain village
in Šumava hills with a great variety of possibilities for outdoor activities like
snow-shoe hiking or cross-country skiing.

Dan Král’, Jan Kratochv́ıl, Jaroslav Nešetřil
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Linear programming

Pavel Klav́ık
pavel@klavik.cz

Presented paper by Jǐŕı Matoušek, Bernd Gärtner

Transversals of d-Intervals
(Understanding and Using Linear Programming)

Definition 1. Let F be a family of sets. Set T is called a transversal of F
if it intersects all sets in F .

Natural and interesting question for a family of sets is a minimal size of
its transversal. What conditions guarantee that it has a small transversal?
This is a complex question. In this speak we will prove the upper bound for
size of a minimal transversal for a family of pairwise intersecting d-intervals.

Definition 2. For an integer d ≥ 1 a d-interval is defined as the union of
d closed intervals on the real line.

Following upper bound is a surprising consequence of the duality theorem
of linear programing.

Theorem 3. Let J be a finite family of d-intervals such that J1 ∩ J2 6= ∅
for every J1, J2 ∈ J . Then J has a transversal of size 2d2.

At first sight it is not obvious that there exists any bound at all that depends
only on d. The best known bound is d2, and it has been established using
algebraic topology. We will prove a bound worse only by a constant factor
of 2, but the proof will be much simpler. Note that the known best lower
bound is d2

log d .

Following two lemmas for the above defined family J imply the theorem:

Lemma 4. There exists an endpoint of some Ji that is contained in at least
n
2d of the d-intervals.

Lemma 5. Let P denote the set of endpoints of the d-intervals in J . Then
there are nonnegative real numbers xp, p ∈ P , such that for every J ∈ J is∑
p∈J∩P xp ≥ 1, and

∑
p∈P xp ≤ 2d.
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In the second part of the speak we will look at the proof in a general
context. We define a transversal and a matching number of a family of
sets. Sometimes it is hard to compute these numbers. We will introduce
fractional transversals and matchings that can be easily computed by linear
programming.

Jan Volec
janv@jikos.cz

Presented paper by Jǐŕı Matoušek, Bernd Gärtner

Sparse Solutions of Linear Systems
(Understanding and Using Linear Programming)

Definition 1. Let w ∈ Rk be a sequence of k real numbers which we
would like to encode into some code z ∈ Rn such that if at most b0.08nc
of numbers become corrupted, we can still recover z (and from them the
original sequence). This a little bit corrupted vector we call z′.

Definition 2. Q is an encoding matrix n× k of rank k and we encode any
w ∈ Rk into z = Qw ∈ Rn.

Definition 3. Let x be error vector defined as z′ − z. The number of
nonzero coordinates in x is r and r ≤ b0.08nc.
Now we try for given z′ find its error vector x and if we are lucky then we
simply recover z using z′ and x.

Definition 4. Let m = n− k and A is m× n matrix such that AQ = 0.

Now we can reformulate our problem into problem called Sparse solutions of
undetermined system of linear equations. The problem is for m× n matrix
A (m < n), vector b ∈ Rm and integer r find vector x ∈ Rn such that
number of nonzero coordinates in x is at most r and holds Ax = b.

Observation 5. With fixed n,m, r, the following two conditions are equiv-
alent:

• For every b the system Ax = b has at most one sparse solution x.
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• Every 2r (or fewer) columns of A are lineary independent.

Now we have exact characterization of x, but there is still open question –
how fast can we find x? Generally it is NP-hard, but in our situation we
are lucky because we can reformulate our problem into linear programming
and the optimum of program will be our vector x.

Definition 6. Basis pursuit (BP) is program minimizing ‖x‖1 = |x1| +
|x2| + · · · + |xn| subject to Ax = b and x ∈ Rn and this program could be
easily reformulated as linear program (BP’).

Theorem 7. For k suffciently large integer, let us set n = 4k,m = 3k, let
A be a random m × n matrix, Q is defined as ortogonal complement of A.
Then the following holds with probability close to 1: if Q is used as encoding
matrix, then even if any at most 8% of entries of z are corrupted, we can
still recover z efficienty by solving (BP).

Martin Kupec
magon@jkopava.cz

Presented paper by Jǐŕı Matoušek, Bernd Gärtner

Smallest Ball and Convex Programming
(Understanding and Using Linear Programming)

Definition 1. Let p1, p2, ..., pn ∈ Rd be points. Task is to find a ball of the
smallest radius that contains all the points.

Definition 2. A convex program is the problem of minimizing a convex
function in n variables subject to linear equality and inequality constraints.

Theorem 3. Karush–Kuhn–Tucker conditions

Let us consider the convex program

minimize f(x)
subject to Ax = b

x ≥ 0
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with f convex and differentiable, with continuous partial derivatives. A fea-
sible solution x∗ ∈ Rn is optimal if and only if there is a vector ỹ ∈ Rm
such that for all j ∈ {1, ..., n},

∇f(x∗)j + ỹTaj

{
= 0 if x∗j > 0
≥ 0 otherwise.

Lemma 4. Let S = {s1, ..., sk} ⊆ Rd be a set of points on the boundary of
a ball B with center s∗ ∈ Rd. B is the unique smallest enclosing ball of S
if and only if for every u ∈ Rd, there is an index j ∈ {1, 2, ..., k} such that
uT (sj − s∗) ≤ 0.

Using Karush–Kuhn–Tucker condition and the lemma above we can state
Smallest enclosing ball problem as convex program as folows.

Theorem 5. Let p1, ..., pn ∈ Rd be points, and let Q be the d × n matrix
whose j-th column is formed by the d coordinates of the point pj . Let us
consider the optimization problem

minimize xTQTQx−
∑n
j=1 xjp

T
j pj

subject to
∑n
j=1 xj = 1
x ≥ 0

in the variables x1, ..., xn. The objective function

f(x) = xTQTQx−
n∑
j=1

xjp
T
j pj

is convex and x∗ is the optimal solution. Then there exist point p∗ = Qx∗

and ball with center p∗ and squared radius −f(x∗) which is the unique ball
of smallest radius containing P .
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Constraint Satisfaction Problem

Tomáš Gavenčiak
gavento@kam.mff.cuni.cz

Constraint Satisfaction Problem tutorial

Introduction

The Constraint Satisfaction Problem (abbreviated as CSP) naturally arises
as a generalization of many well-studied problems in computational com-
plexity. A CSP problem is given by a finite set of variables and a common
(finite or countable) domain of their values, together with a finite number
of constraints. A constraint is a relation on a subsets of variables. The goal
is to find a solution, that is an assignment of values to variables satisfying
all the given constraints.

CSP captures three important aspects of problems at once, as the problems
easily described by CSP include:

• Logical problems: 3-SAT, NAE-SAT, 2-SAT, . . .

• Graph problems: k-colorability, L(2, 1)-labelling, . . .

• Algebraic problems: Existence of homomorphism between two struc-
tures

While some of these problems are in P (2-SAT), others are NP-complete
(3-SAT). One of the big questions in CSP is the complexity of CSP under
given restrictions on the constraints.

The algorithms efficiently solving the restricted or the general CSP are
widely used in real-world applications, both in industry and research. The
examples include: finding efficient layouts, scheduling, resource distribution,
fitting phenomena to measurements, solving logical puzzles, and many more.

The design of such algorithms must exploit the structure of the constraints
to reduce the (generally exponential) search time and to solve many of the
polynomial cases in polynomial time.
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The tutorial is divided into three parts. The first part introduces basic
concepts of CSP and presents some complexity results. The later parts focus
on algebraic properties of CSP and deeper results of algebras corresponding
to CSP problem classes.

Definitions and facts

Definition 1.[CSP as a Value assignment] Given a finite set of variables V ,
a (finite) domain D and a set of constraints C, where a constraint is a pair
(si, Ri) of a scope (ordered subset of variables) and a relation, is there an
assignment of values f : V → D such that f [si] ∈ Ri for all i?

Definition 2.[CSP as a Conjunctive query] Given a formula
Φ(x1, x2, . . . , xk) = R1(s1) ∧ · · · ∧ Rq(sq), where the relations are seen as
predicates and si are variable vectors, is Φ satisfiable?

Definition 3.[CSP as a Structure homomorphism] Given two structures
A = (V ;S1, S2, . . . Sk) and B = (D;R1, R2, . . . Rk), is there a homomor-
phism h : A → B?

Lemma 4. The three types of CSP problems are polynomially equivalent.

Proof The transformations between value assignment CSP and structure
homomorphism CSP are quite straightforward, the reduction to conjunctive
query CSP requires the encoding of the values as dlog2 |D|e-tuples of bits,
or some other reduction. �

From this point the tutorial focuses on the homomorphism CSP, although
the constraints and most of the results have their counterparts in the two
other definitions as well.

We parametrize the CSP with limitations on the constraints. The restric-
tions may affect either the left side of the homomorphism (which of the ”vari-
ables” V appear in common constraints), or the right side (which ”value”
combinations of D are allowed for the constrained ”variables”).

2-SAT and HORN-SAT are nice examples of right-side restrictions that
make the problem polynomial regardless of the structure of the given for-
mula. One example of a left-side restriction for graph CSP problems that
makes CSP polynomial is the restriction to trees. Note that finding a graph
homomorphism from a tree (input) to a (fixed) graph G is decidable in time
linear with the size of the tree.
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Definition 5. For given structures A and B, CSP (A,B) denotes the CSP
structure homomorphism problem from A to B.

For classes of structures C and D, CSP (C,D) denotes class of all homomor-
phism problems CSP (A,B) for A ∈ C and B ∈ D.

We let CSP (C,−) denote the class of problems with only left-side restric-
tions and CSP (D) = CSP (−,D) the class with only right-side restrictions.

Classification of restrictions

The theorem below states the border between polynomial and non-polyno-
mial left-side restrictions.

Definition 6. Two structures A and B are homomorphically equivalent
if there is a homomorphism from A to B and a homomorphism from B to
A. A class C has bounded tree-width modulo homomorphic equivalence if
there is a k such that every structure in C is homomorphically equivalent
to a structure of tree-width at most k.

Please refer to the original paper Constraint satisfaction, bounded tree-
width, and finite-variable logics, Dalmau et al., LNCS 2002 for further de-
tails.

Theorem 7.[Dalmau et al. 2002] Assume that FPT 6= W [1]. Then
for every recursively enumerable class C of structures of bounded arity,
CSP (C,−) is in polynomial time if and only if C has bounded tree-width
modulo homomorphic equivalence.

The right-side restrictions are in general more complex and there are still
many open problems in the area.

Definition 8. A constraint language L is a finite set of relations on D, the
problem CSP (L) is the CSP (−,B) where B = (D;Ri, . . . ) is the structure
containing the relations from L in some order.

Two types of classifications of CSP (L):

• Computational complexity – decidability of existence of homomor-
phism from given structure.

• Descriptive complexity – definability in a given logic on the left-side
structures.
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Dichotomy conjecture. [Feder, Vardi, SIAM 1998] For each constraint
language L, the problem CSP (L) is either in P or it is NP-complete.

The motivation for the conjecture is that P 6= NP implies that there are
many problem classes between P and NP-complete [Ladner, J.ACM 1975].
The conjecture implies that neither of them is a CSP.

Pavel Paták
ppatak@seznam.cz

Presented paper by Andrei Krokhin

The Complexity of Constraint Satisfaction Problems
- Tutorial, Part II

(http://www.karlin.mff.cuni.cz/~ssaos)

Introduction

In this paper we introduce the idea that stands beyond the algebraic aproach
to CSP. We give same basic definitions, e.g relational and operational clones,
polymorphisms, constraint languages and some more. Later we will show
why the relation clones are so important in deciding whether there exists a
homomorphism to a given structure.

In the second part of the talk we will introduce further algebraic notation
and discuss some algorithmic reductions of CSP.

More formally

Definition 1. For a set Γ on a structure D, denote 〈Γ〉 the set of all rela-
tions that can be expressed by primitive positive formulas over Γ, e.g. using
only relations from Γ, conjuctions and existencional quantifier.
We call the set 〈Γ〉 the relational clone generated by Γ.
For a set of operations F on D let us denote 〈F 〉 the operational clone gen-
erated by F , i.e. the set of all functions obtained from F via superpositions
f(f1, . . . , fn).
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Theorem 2. If Γ1 and Γ2 are constraint languages such that 〈Γ1〉 ⊆ 〈Γ2〉,
then CSP(Γ1) is logspace reducible to CSP(Γ2).

Definition 3. An n-ary operation f is a polymorphism, iff it is a homo-
morphism from An to A.

Definition 4. Let Γ be a set of relations on D and F be a set of operations,
then we denote:
Pol(Γ) ≡ the set of all polymorphism on Γ.
Inv(F ) ≡ {R|R is invariant under all operations in F}.
Theorem 5. For any constraint language and for any set F of operation
the following is true:

1. 〈Γ〉 = Inv(Pol(Γ))

2. 〈F 〉 = Pol(Inv(Γ)).

We say that the these operations form a Galois Correspondence.

Corollary 6. We can decide that a problem X is NP-complete by con-
structing a reduction to X from some NP-complete problem.
But all we need to show is Pol(Γ) ⊆ Pol(Γ′), for some Γ′ with NP-complete
CSP(Γ′)

For an unary operation f and a relation R on D, let

f(R) = {f(a1), f(a2), . . . , f(an)|(a1, a2, . . . an) ∈ R}.

For a constraint language Γ let f(Γ) = {f(R)|R ∈ Γ}.
Theorem 7. Let Γ be finite, and let f ∈ Pol(Γ) be unary with minimal
range. Then CSP(Γ) and CSP(f(Γ)) are polynomial time equivalent.

Theorem 8. If the decision problem CSP(Γ) is in P, than the corresponding
search problem is in P as well.

Definition 9. A finite algebra is a pair A = (D,F ), where D is a finite set
and F is a family of operations on D.
The clone 〈F 〉 is called the clone of term operations of A.
Two algebras are term equivalent if they have the same clone of term
operations.
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Definition 10. Let A = (D,F ) be a finite algebra. Let
CSP(A) = {CSP(Γ)|Γ ⊆ Inv(F ), |Γ| <∞}.
We say that A is tractable if each problem in CSP(A) is in P, and A is
NP-complete, if some problem in CSP(A) is in NP.

Definition 11. For a class K of similar algebras, let

• H(K) be the class of all homomorphic images of algebras from K

• S(K) be the class of all subalgebras of algebras from K

• P(K), resp. Pfin(K) be the class of all direct, resp. finite products of
algebras from K

A class of similar algebras that is closed under the operators H, S, P is called
a variety.
For an algebra A the class HSP(A) is the variety generated by A, and is
denoted var(A).

Theorem 12. If an algebra A is tractable than every finite algebra in
var(A) is tractable. If var(A) contains a finite NP-complete algebra then
A is NP-complete.

References

[1] Andrei Bulatov, Peter Jeavons, Andrei Krokhin: Classifying the com-
plexity of constraints using finite algebras

[2] A. Krokhin: The Complexity of Constraint Satisfaction Problems, Tu-
torial to Summer School on Algebra
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Alexandr Kazda
alexandr.kazda@seznam.cz

Presented paper by Andrei Krokhin

The Complexity of Constraint Satisfaction
Problems, Part III

(http://www.karlin.mff.cuni.cz/̃ssaos/CSPTutorialPartIII.pdf)

Summary

We finish the overview of algebraic approach to CSP by presenting several
starting points for further study.

We introduce Taylor and WNU operations and show links with combina-
torial results about graph homomorphism CSP. In particular, we note that
a well-known combinatorial result of Bang-Jensen and Hell about CSP(H)
can be derived as a corollary of an algebraic result by Barto, Kozik and
Niven.

Taking off in another direction, we present the Datalog language for solving
certain kinds of CSP. This kind of reasoning leads to the bounded width
theory.

While we do not have time to develop the whole Tame Congruence Theory,
we offer a taste of it, describing (in a broad, hand-waving fashion) the
complexity of certain kinds of CSP using only algebraic properties of their
lattices.

Major results

Definition 1. An n-ary operation f on an algebra A is called a Taylor
operation if f is idempotent (ie. f(x, . . . , x) = x) and for all 1 < i ≤ n, f
satisfies some identity of the form

f(xi1, . . . , xin) = f(yi1, . . . , yin)

where xij, yij ∈ {x, y} (as symbols) and xii 6= yii.

Definition 2. An n-ary operation f on an algebra A is called WNU oper-
ation if:
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• f is idempotent (ie. f(x, . . . , x) = x.

• f satisfies the identity
f(y, x, . . . , x) = f(x, y, . . . , x) = · · · = f(x, x, . . . , y).

Theorem 3.(Bang-Jensen, Hell, 1990) If H is a core digraph without
sources or sinks that is not a disjoint union of directed cycles then CSP (H)
is NP-complete.

Theorem 4.(Barto, Kozik, Niven, 2008) If H is a core digraph without
sources or sinks. If H has a WNU polymorphism then H is a disjoint union
of directed cycles.

Theorem 5. For a core structure B with an associated idempotent algebra
A the following is true:

var(A) CSP (B) co− CSP (B)
omits admits complexity definability

1 NP-complete not Datalog
1 2 modpL-hard not Datalog

1,2 5 P-hard not Linear Datalog
1,2,5 4 NL-hard not Symmetric Datalog

.

Václav Brožek
99081@mail.muni.cz

Presented paper by A. Bulatov, P. Jeavons and A. Krokhin

Classifying the Complexity of Constraints Using
Finite Algebras

( www.dur.ac.uk/andrei.krokhin/papers/SIAMclassifying.pdf )

Introduction and Motivation

The paper concerns tractability of CSP problems. It starts with a CSP
problem given by a set (language) of relations which are used to specify
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constraints. Then it shows how to focus only on a special kind of such
languages, relational clones. From relational clones it transfers to sets of
operations on the domain set of the relations and finally to algebras. Some
of interesting results from the paper include:

• Sufficient and necessary conditions for tractability of a CSP problem
in terms of its associated algebra.

• Classification of tractability for CSP with a special kind of associated
algebras, generalizing earlier classification results.

• Tractability of decision CSP problem implies tractability of its search
variant.

The work in this paper is motivated by earlier results, e.g. Schaefer’s di-
chotomy for CSP over two-point sets. The methods used here connect nicely
CSP with universal algebra and lead to promising generalisations. However,
some interesting problems remain still open.

Definitions

It is assumed that P 6= NP in this paper. Let A be a set. A finitary relation
over A is a subset of An for some finite n.

Definition 1. (CSP) A (finite or infinite) set Γ of finitary relations over a
set A (domain) is called a constraint language. By CSP(Γ) we denote the
following decision problem:
Instance: A triple (V,A, C) where:

• V is a finite set of variables;

• C is a finite set of constraints {C1, . . . , Cq} where Ci = 〈si, %i〉 and

– si is a tuple of variables of length mi called the constraint scope
– %i ∈ Γ is a mi-ary relation called the constraint relation

Question: Is there a solution, i.e. a function ϕ : V → A such that for each
〈(x1, . . . , xm), %〉 ∈ C: (ϕ(x1), . . . , ϕ(xm)) ∈ %?
By a search variant of CSP(Γ) we denote the problem of finding ϕ.

Definition 2. (Relational clone) A constraint language Γ is called a re-
lational clone if it contains every predicate expressible by a FO formula
involving
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(a11, a21, · · · an1) ∈ %
(a12, a22, · · · an2) ∈ %

...
...

. . .
...

(a1m, a2m, · · · anm) ∈ %
↓ ↓ ↓

(f(a11, . . . , a1m), f(a11, . . . , a1m), · · · f(an1, . . . , anm)) ∈ %

Figure 1: The relation % is preserved by f .

1. relations (predicates) from Γ and the identity predicate =A on the
domain;

2. conjunction; and

3. existential quantification.

For every constraint language Γ the least relational clone containing Γ exists
and is denoted 〈Γ〉.

A finitary operation on A is a function An → A for some n.

Definition 3. (Polymorphism) Let f be an m-ary operation and % an n-ary
relation on A. Then we say that f preserves % (or that f a polymorphism of %
or that % is invariant under f) if whenever (a11, . . . , an1), . . . , (a1m, . . . , anm)
∈ % then (f(a11, . . . , a1m), . . . , f(an1, . . . , anm)) ∈ %. See also Figure 1.

Further, we define

Pol(Γ) = {f | f preserves each % ∈ Γ}
Inv(F ) = {% | % is invariant under each f ∈ F}

Definition 4. (Essentially unary operation) An operation f : An →
A is called essentially unary if there are a nonconstant unary operation
g : A→ A and an index i, 1 ≤ i ≤ n such that f(a1, a2, . . . , an) = g(ai) for
all choices of a1, . . . an. If g is identity then f is called a projection.
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Definition 5. (Algebra)

• A tuple A = (A,F ) where A is a nonempty set and F is a set of some
finitary operations on A is called algebra.

• Every operation f onA is called term operation ofA if f ∈ Pol(Inv(F )).

• A is surjective if all of its term operations are surjective.

• An operation f is called idempotent if f(x, . . . , x) = x for all x ∈ A.
The set of all idempotent term operations of A is denoted Termid(A).
The algebra (A, Termid(A)) is then called the full idempotent reduct
of A.

• A subalgebra of A is a pair (B,G) such that ∅ 6= B ⊆ A, for every
f ∈ F the restriction f �B is an operation on B, and G = {f �B | f ∈
F}.

• Assume that there is a surjective map ϕ : A→ B such that the follow-
ing prescription yields and operation on B for every
f : An → A ∈ F :

fϕ : (ϕ(a1), . . . , ϕ(an)) 7→ (ϕ ◦ f)(a1, . . . , an)

i.e. if f preserves kerϕ. Then ϕ is a homomorphism of A to (B,G),
where G = {fϕ | f ∈ F} and (B,G) is a homomorphic image of A.

• A is called simple if A is finite and every homomorphic image (B,G)
of A satisfies: |B| < |A| ⇒ |B| = 1. A simple A is called strictly
simple if every its subalgebra (B,G) satisfies B 6= A⇒ |B| = 1.

Definition 6. (Tractability) A finite constraint language Γ is tractable if the
decision problem CSP(Γ) is solvable in polynomial time, i.e. CSP(Γ) ∈ P.
An arbitrary constraint language Γ is tractable if ∆ is tractable for every
finite ∆ ⊆ Γ. If there is a finite ∆ ⊆ Γ such that CSP(∆) is NP-complete
then Γ is called NP-complete.

A set of operations F is called tractable, or NP-complete if Inv(F ) is
tractable, or NP-complete, respectively. An algebra (A,F ) is called tractable,
or NP-complete if F is tractable, or NP-complete, respectively.
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Results

Some of the results listed do not originate from this paper but they are
important for capturing the whole picture.

Theorem 7. (Reduction to clones) A constraint language Γ is tractable, or
NP-complete iff 〈Γ〉 is tractable, or NP-complete respectively.

Theorem 8. (Reduction to algebra) Relational clones are precisely the
sets of the form Inv(F ) for a suitable set F of operations. In particular,
〈Γ〉 = Inv(Pol(Γ)) for every Γ.

Theorem 9. (Criterion for NP-completeness) If every f ∈ Pol(Γ) is
esentially unary then Γ is NP-complete.

Theorem 10. (Reduction to surective algebra) For every algebra (A,F )
there is some B ⊆ A and a set of operations G consisting of all
f ∈ Pol(Inv(F )) preserving B such that (B,G) is surjective, and (A,F )
is tractable, or NP-complete iff (B,G) is tractable, or NP-complete respec-
tively.

Theorem 11. (Reduction to full idempotent reduct) For every algebra A
is true that A is tractable, or NP-complete iff its full idempotent reduct is
tractable, or NP-complete respectively.

As a consequence, a constraint language Γ is tractable iff the search variant
of CSP(Γ) can be solved in polynomial time.

Theorem 12. (Reduction to subalgebra and homomorphic image) For every
algebra A is true that

• If A is tractable then every subalgebra and homomorphic image of A
is tractable.

• If some subalgebra or homomorphic image of A is NP-complete then
A is NP-complete.

Theorem 13. (Dichotomy for fsss algebras) A finite strictly simple sur-
jective algebra is NP-complete if all of its term operations are essentially
unary. Otherwise it is tractable.

This result, extending previously known dichotomy for two-point algebras,
points towards a more general question:

Conjecture 14. A finite idempotent algebra A is NP-complete if there is
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some algebra (B,G) such that |B| > 1, (B,G) is a homomorphic image of
some subalgebra of A and all operations in G are projections. Otherwise A
is tractable.

Jakub Buĺın
jakub.bulin@gmail.com

CSPs of Bounded Width

Introduction

Given a finite relational structure A, CSP(A) is the following decision prob-
lem:

INPUT: A structure X of the same type as A.
QUESTION: Is there a homomorphism from X to A?

There are two main polynomial time algorithms (or algorithmical approaches)
which solve large classes of CSPs. One of them generalizes the Gaussian
elimination and can be used for CSPs with so-called ”few subpowers”. The
other one, the Local consistency checking algorithm, works for CSPs of
bounded width. We will concentrate on the latter. It is believed that all
tractable CSPs can be solved by a certain combination of these two algo-
rithms.

We will define bounded width via the notion of (k, l)-strategy and present
the (k, l)-consistency checking algorithm. Then we will introduce the re-
cently proved Bounded width conjecture of B. Larose and L. Zádori and
explore the class of CSPs of bounded width.

Bounded width

Let A = 〈A,R1, . . . ,Rn〉 be a fixed finite relational structure. Bounded
width can be defined in several ways (bounded tree width duality, solvability
in Datalog, pebble games). We will introduce the (k, l)-strategies:

Definition 1. Let X be a structure of the same type as A and let k ≤ l be
positive integers. A family F =

⋃
L⊆X,|L|≤l FL of partial homomorphisms
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from X to A is called a (k, l)-strategy for (X,A), if it satisfies the following:

(S0) dom(f) = L for each f ∈ FL.

(S1) For any f ∈ FL and K ⊆ L the function f |K belongs to FK .

(S2) If K ⊆ L ⊆ X with |K| ≤ k, |L| ≤ l and f ∈ FK , then there exists
g ∈ FL such that g|K = f .

It is easy to see that if there is a homomorphism from X to A, then there
exists a nonempty (k, l)-strategy. A is said to have bounded width, if the
converse is true for some k ≤ l:
Definition 2. A has relational width (k, l) if the following is true: For each
X, if there exists a nonempty (k, l)-strategy for (X,A), then X is homomor-
phic to A.

We say that A has bounded width if it has relational width (k, l) for some
k ≤ l.
We will now introduce the Local consistency checking algorithm, which
solves CSPs of bounded width in polynomial time:

Local Consistency Checking

Lemma 3. ”We can construct the biggest (k, l)-strategy in P-time.”

Proof The idea of the (k, l)-consistency checking algorithm is simple: Take
all partial homomorphisms from X to A with at most l-element domain.
Then throw away those which falsify conditions (S1) or (S2). We end up
with the biggest (k, l)-strategy, which is nonempty iff there is a homomor-
phism from X to A.

Input: A structure X of the same type as A.
Initial step: For each L ⊆ X, |L| ≤ l let FL := all partial homomorphisms
from X to A with domain L.
Iteration step: If there exist f ∈ F falsifying (S1) or (S2), remove f from
F .
Output: If F = ∅, return NO, else return YES. �

The Larose-Zádori Conjecture

To each relational structure A is naturally associated an algebra

A = 〈A, {idempotent polymorphisms of A}〉.
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It is crucial to the algebraic approach to CSP that the complexity of CSP(A)
depends only on the variety generated by A. It is the same case with the
bounded width:

A reduct of a module is an algebra whose term operations can be expressed
as α1x1 + · · · + αnxn, where αi ∈ R and xi ∈ M for some module M over
a ring R.

Theorem 4.(Larose, Zádori ’06). If HSP(A) contains a reduct of a module,
then A doesn’t have bounded width.

Conjecture 5.(Larose, Zádori ’06). A has bounded width iff HSP(A)
doesn’t contain a reduct of a module ( ⇔ HSP(A) omits types 1 and 2).

Theorem 6.(Barto, Kozik ’08). YES!
If HSP(A) doesn’t contain a reduct of a module, then A has relational width
(2dp2e, 3d

p
2e), where p is the maximal arity of relations in A.
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On two questions about circular choosability
(http://www.math.princeton.edu/ snorin/papers/oncircchoose.pdf)

Introduction

In this talk we present first half of article which answers question of Zhu
that circular list chromatic number of even cycles is two.

Circular list choosability

Definition 1.

By (p,q)-coloring of G we mean function f : V− > {0, 1, . . . , p − 1} such
that for each edge uv of G is q < |f(u)− f(v)| < p− q
Definition 2.

Circular chromatic number is

χc(G) = inf{p/q|G admits (p,q)-coloring}

Definition 3.

For t ≥ 1 graph G is circulary t-(p, q)-choosable if for any list assignment
L(v) ⊂ {0, 1, . . . , p − 1} with L(v) ≥ tq admits circular (p, q)-coloring with
these lists.

Definition 4.

Circular choosability is defined as

χc,l(G) = inf{t|G is t-(p,q)-choosable for any p,q}
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We observe that circular choosability is not less that circular chromatic
number.

Circular list choosability of even cycles

We use combinatorial nullstellensatz:

Theorem 5.

Let F be field and p polynomial in F [x1, x2, . . . , xn]. Suppose degree deg(p)
is
∑n
i=1 di and suppose coeficient at

∏n
i=1 x

di
i is nonzero. Then for any sets

S1, S2, . . . , Sn with |Si| > di there exists s1, s2, . . . , sn with si ∈ Si such that
p(s1, s2, . . . , sn) 6= 0

Proof

First we prove by induction that if q is polynomial in F [x1, x2, . . . , xn]and
if di is maximum degree of xi in q and Si ⊂ F with |Si| = di + 1 then
if p is zero at C = S1 × S2 . . . × Sn then q = 0. Because at C holds∏
s∈Si

(xi − s) = 0 we can substitute xdi+1
i to p and get polynomial satisfy-

ing previous claim. But coefficient at
∏n
i=1 x

di
i is nonzero contradiction. �

Theorem 6.

Every even cycle has circular list choosability two.

Proof

Every graph with edges has obviously χc,l(G) ≥ 2. Let v1, v2, . . . , v2n be
vertices of C2n in this order and let v2n+1 = v1. Consider complex polyno-
mial p ∈ C[x1, x2, . . . , x2n] with convention x2n+1 = x1.

p =
2n∏
j=1

q−1∏
k=−(q−1)

(xj − e2πk/pxj+1)

This is analogy of adjacency polynomial. Consider y1, y2, . . . , y2n with yi ∈
{0, 1, . . . , p − 1}. Then p(e2πiy1/p, e2πiy2/p, . . . , e2πiy2n/p) 6= 0 if and only if
y1, y2, . . . , y2n is proper (p, q)-coloring of C2n

Degree deg(p) = 2n(2q− 1) Consider coeficient a at
∏
j = 1nx(

j2q− 1) It is
equal

∑
k = 02q−1a2n

k where ak is coefficient at x2q−1−k
j xkj+1 in
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∏q−1
k=−(q−1)(xj − e2πk/pxj+1. Clearly

ak =
∑

J ⊂ {−(q + 1), . . . , q − 1}, |J | = k
∏
j∈J
−e2πij/p

Observe that ak = ak∗ so ak are real and because a0 = 1 then a is positive.
If we have 2-(p,q)-coloring then size of list Lj ≥ 2p so there exist coloring
by nullstellensatz. �
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Presented paper by V. Anuradha, Chinmay Jain, Jack Snoeyink, Tibor
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How long can a graph be kept planar?
(emis.kaist.ac.kr/journals/EJC/Volume 15/PDF/v15i1n14.pdf)

Introduction

The graph (non-)planarity game is played on the complete graph Kn be-
tween an Enforcer and an Avoider, each of whom take one edge per round.
The game ends when the edges chosen by Avoider form a non-planar sub-
graph.

The graph (non-)planarity game is an instance of a graph game that En-
forcer “easy” wins and we are interested in how fast he wins. Enforcer
inevitably succeeds by round 3n − 5, when Avoider’s graph has simly too
many edges to be planar. The paper shows that Avoider can play for 3n−26
turns, improving the previous bound of 3n− 28

√
n.

The paper details Avoider’s strategy, which can be summarized as follows:
Avoider designates four anchor vertices in two pairs, a0, a1 and b0, b1. In
each turn, Avoider adds an edge either to connect a remaining vertex to
one anchor from each pair, or to play a permutation game that builds path
joining vertices that are connected to the same pair of anchors.
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More formally

In the talk we prove the following theorem.

Theorem 1. In the graph (non-)planarity game on n vertices, Avoider can
play at least 3n− 26 edges while keeping his graph planar.

We define some terminology.

Definition 2. Let V be the set of n− 4 non-anchor vertices. Avoider will
connect each v ∈ V to exactly two anchors ai and bi for some i, j ∈ {0, 1}
– in this case we say that w is pinned to ij.

Definition 3. After v is pinned to ij, Avoider may choose edges that join
v to at most two other vertices that have also been pinned to ij. We say
that a vertex is active in ij if it is pinned to ij, but not yet connected to
two other neighbours.

For the proof the following lemmas will be useful.

Lemma 4. Avoider chooses at least three of the six edges between anchors,
and guarantees that every non-anchor vertex v ∈ V becomes pinned to some
ij, with i, j ∈ {0, 1}
Lemma 5. Let P be the set of all vertices pinned to ij. Avoider will be
able to choose at least |P | − 6− i · j+ 2(i+ j) edges in the subgraph induced
by P .
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The Road Coloring Problem
(http://arxiv.org/pdf/0709.0099)

Introduction

A synchronizing word of a deterministic automaton is a word in the alpha-
bet of colors (considered as letters) of its edges that maps the automaton
to a single state. A coloring of edges of a directed graph is synchronizing if
the coloring turns the graph into a deterministic finite automaton possessing
a synchronizing word.

The road coloring problem is the problem of synchronizing coloring of a
directed finite strongly connected graph with constant outdegree of all its
vertices if the greatest common divisor of lengths of all its cycles is one.
The problem was posed by Adler, Goodwyn and Weiss over 30 years ago
and evoked noticeable interest among the specialists in the theory of graphs,
deterministic automata and symbolic dynamics.

More formally

Definition 1. An AGW graph (Adler, Goodwyn and Weiss) is a finite
directed strongly connected graph with constant outdegree of all its vertices
where the gcd of lengths of all its cycles is one.

Definition 2. A word s ∈ Σ+ is called a synchronizing word of an automa-
ton with transition graph Γ if |Γs| = 1.

Definition 3. A coloring of a directed finite graph is synchronizing if the
coloring turns the graph into a deterministic finite automaton possessing a
synchronizing word.

Definition 4. A pair of distinct states p,q of an automaton will be called
synchronizing if ps = qs for some s ∈ Σ+. If for any s ps 6= qs, we call the
pair deadlock. A synchronizing pair of states p, q of an automaton is called
stable if for any word u the pair pu,qu is also synchronizing.
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Definition 5. We call the set of all outgoing edges of a vertex a bunch if
all these edges are incoming edges of only one vertex.

Definition 6. Let u be a left eigenvector with positive components having
no common divisor of adjacency matrix of a graph with vertices p1, . . . ,pn.
The i-th component ui of the vector u is called the weight of the vertex pi
and denoted by ω(pi). The sum of the weights of the vertices from a set D
is denoted by ω(D) and is called the weight of D. The subset D of states
of an automaton such that ω(D) is maximal and |Ds| = 1 for some word
s ∈ Σ+ let us call F -maximal.

The subset Γs of states for some word s such that every pair of states from
the set is deadlock will be called an F -clique.

Theorem 7. [1] There exists a partition of Γ on F -maximal sets (of the
same weight)

Theorem 8. [2] Let us consider a coloring of AGW graph Γ. Stability of the
states is a binary relation on the set of states of the obtained automaton;
denote this relation by ρ. Then ρ is a congruence relation, Γ/ρ presents
an AGW graph and synchronizing coloring of Γ/ρ implies synchronizing
recoloring of Γ.

Lemma 9. Let ω be the weight of F -maximal set of the AGW graph Γ via
some coloring. Then the size of every F -clique of the coloring is the same
and equal to ω(Γ)/ω (the size of partition of Γ on F -maximal sets).

Lemma 10. Let F be F -clique via some coloring of AGW graph Γ. For
any word s the set Fs is also an F -clique and any state [vertex] p belongs
to some F -clique.

Lemma 11. Let A and B (|A| > 1) be distinct F -cliques via some coloring
without stable pairs of the AGW graph Γ. Then |A|−|A∩B| = |B|−|A∩B| >
1.

Lemma 12. Let some vertex of AGW graph Γ have two incoming bunches.
Then any coloring of Γ has a stable couple.

Definition 13. Let us call a subgraph S of the AGW graph Γ a spanning
subgraph of Γ if to S belong all vertices of Γ and exactly one outgoing edge
of every vertex.

Lemma 14. Let N be a set of vertices of level n from some tree of the
spanning subgraph S of AGW graph Γ. Then in a coloring of Γ where all
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edges of S have the same color α, any F -clique F satisfies |F ∩N | ≤ 1.

Lemma 15. Let AGW graph Γ have a spanning subgraph R of only dis-
joint cycles (without trees).Then Γ also has another spanning subgraph with
exactly one vertex of maximal positive level.

Lemma 16. Let any vertex of an AGW graph Γ have no two incoming
bunches. Then Γ has a spanning subgraph such that all its vertices of max-
imal positive level belong to one non-trivial tree.

Theorem 17. Any AGW graph Γ has a coloring with stable couples.

Theorem 18. Every AGW graph Γ has synchronizing coloring.
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Looseness of Plane Graphs
(http://umv.science.upjs.sk/preprints/dokumenty/A3-2009.pdf)

Introduction

All considered graphs are finite, loops and multiple edges are allowed.

Let G = (V,E, F ) be a connected plane graph with the vertex set V , the
edge set E and the face set F . For a face f , the size of f , deg(f), is defined
to be the length of the shortest closed walk containing all edges from the
boundary of f .

We write v ∈ f if a vertex v is incident with a face f . The vertices u and v are
face independent if there is no face f such that v ∈ f and u ∈ f . A set S of
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vertices is face independent if any two vertices from S are face independent.
The face independence number of a graph G, α2(G), is defined to be the
number of vertices in the maximum face independent set of vertices.

A k-colouring of a graph G is a mapping ϕ : V (G)→ {1, . . . , k}. For a set
X ⊆ V we define ϕ(X) to be the set of colours {ϕ(v); v ∈ X}. Particularly,
if f is a face of G then ϕ(f) denotes the set of colours used on the vertices
incident with the face f . A face f ∈ F is called loose if |ϕ(f)| ≥ 3, otherwise
it is called nonloose. A k-colouring of a graph G is called the nonloose
k-colouring if it does not involve any loose face, otherwise it is a loose k-
colouring.

We are interested in finding an answer to the following

Question: What is the minimum number of colours ls(G) that any sur-
jective vertex colouring of a connected plane graph G with ls(G) colours
enforces a loose face?

The invariant ls(G) of a plane graph G is called the looseness of G and it
has been introduced by Negami and Midorikawa. Negami proved that for
plane triangulation G

α0(G) + 2 ≤ ls(G) ≤ 2α0(G) + 1 ,

where α0(G) is the vertex independence number of G.

General properties

Observation 1. Let G be a plane graph. Then ls(G) ≥ α2(G) + 2.

Theorem 2. Let G be a connected plane graph such that the dual G∗ of G
has t vertex disjoint cycles. Then

ls(G) ≥ t+ 2 .

Theorem 3. Let G be a connected plane graph and let G∗ be its dual. Then
there are t0 vertex disjoint cycles in G∗ such that

ls(G) = t0 + 2 .

The problem of determining the maximum number of vertex disjoint cycles
in plane graphs is known to be NP-complete, so good estimations for this
parameter are welcome.
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The girth of a graph G is the length of its shortest cycle.

Theorem 4. Let G = (V,E, F ) be a connected plane graph, let g be the
girth of the dual graph G∗ of G. Then

ls(G) ≤ 1
g
|F (G)|+ 2 .

Moreover, the bound is sharp.

The edge connectivity of a plane graph G plays an important role in the
concept of the looseness of G. Observe, that each minimum edge-cut of
size g in G corresponds to a cycle in G∗ and vice versa, therefore, the edge
connectivity of a graph G is equal to the girth of the dual graph G∗. Hence,
we can obtain an upper bound for the looseness of plane graphs in terms of
the edge connectivity of G.

Theorem 5. Let G = (V,E, F ) be a connected plane graph with the edge
connectivity κ′. Then

ls(G) ≤ 1
κ′
|F (G)|+ 2 .

Moreover, the bound is sharp.

Corollary 6. Let G be an n-vertex 3-connected cubic plane graph. Then

ls(G) ≤ 1
6
n+

8
3
.

Theorem 7. For any integer t ≥ 4 there exists a 3-connected cubic plane
graph G on n vertices such that

t = ls(G) =
1
6
n+

8
3
.

Observation 8. Let G be a plane graph on n vertices which contains a face
incident with at least three vertices. Then ls(G) ≤ n.

If G is a simple plane graph then this trivial upper bound is tight if and
only if G is a triangle. If multiple edges or loops are allowed, suitable graphs
could be constructed easily.
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Theorem 9. Let G be a connected simple plane graph on n vertices. Then

ls(G) ≤ 2n+ 2
3

.

Theorem 10. For any integer t ≥ 1 and any k ∈ {1, 2, 3} there exists a
simple k-connected plane graph G on n vertices, n ≥ t, such that

ls(G) =
2n+ 2

3
.
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Planar Finite Graph Emulators and Fellows’
Conjencture

(http://arxiv.org/abs/0812.3700v1)

Introduction

In this short paper, we deal with finite planar emulation of undirected
graphs. We define basic terms related to emulators and have a look at
Fellows’ conjencture. Considering recent research, we displace this 20 years
old conjecture. We also demonstrate using simple prove technique called
discharging to prove absence of emulator for particular graph.

More formally

Definition 1. A graph H is a cover of a graph G if there exists a pair
of onto mappings (ϕ,ψ), ϕ : V (H) → V (G), ψ : E(H) → E(G), called a
(cover) projection, such that ψ maps the edges incident with each vertex v
in H bijectively onto the edges incident with ϕ(v) in G.

Definition 2. A graph H is an emualtor of a graph G if there exists a pair
of onto mappings (ϕ,ψ), ϕ : V (H) → V (G), ψ : E(H) → E(G), called a
(cover) projection, such that ψ maps the edges incident with each vertex v
in H surjectively onto the edges incident with ϕ(v) in G.

Definition 3. Graph G is called minor of graph H if it can be obtained by
0 or more edge contraction from a subgraph of H.

Conjecture 4. Graph G has a finite cover if and only if it embeds in the
projective plane.

Conjecture 5. Graph G has a finite emulator if and only if there is a finite
cover of this graph.

Lemma 6. Graph G embeds in the projective plane if and only if it does
not contain any one of forbidden minors for the projective plane.

Lemma 7. Let’s consider H to be a finite emulator of G and v ∈ V (G) to
be a vertex degree 3. Then H can be modified so that all vertices in ϕ−1(v)
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are degree 3.
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On the decay of crossing numbers
(Journal of Combinatorial Theory, Series B 98 (2008), 33-42 )

Introduction

The crossing number cr(G) of a graph G is the minimum possible number
of crossings over all drawings of G in the plane. In 1993, Richter and
Thomassen conjectured that in any graph G with crossing number k there
is an edge e such that cr(G− e) ≥ k − c

√
k, for some constant c. However

this was proved only for dense graphs, that is, graphs with n vertices and
Ω(n2) edges.

In this talk I shall present a proof of the following theorem:

Theorem 1. For every ε > 0, there is a constant n0 depending on ε such
that if G is a graph with n > n0 vertices and m > n1+ε edges, then there is
a subgraph G′ of G formed by deleting at least ε

24m edges, and with crossing
number

cr(G′) ≥
(

1
28
− o(1)

)
cr(G)

The proof of Theorem 1 uses a technique called the embedding method.
This technique helps proving upper bounds for the crossing number of a
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graph G in terms of the crossing number of one of its subgraphs.

We shall first apply the embedding method to prove the theorem in the
special case when the crossing number is bounded from below by the sum
of the squares of the degrees (Theorem 2).

While in general this restriction does not hold, it can be shown that any
graph G which is not too sparse has the crossing number bounded from
below by a sum of the degree squares of a well chosen subset of vertices.
These vertices induce a subgraphG∗ ofG to which the strategy of Theorem 2
may be applied, thus finding the subgraph G′ required by Theorem 1.

More formally

In the special case when G is a graph with n vertices, degree sequence
d1, d2, . . . , dn and cr(G) ≥ 7

16

∑n
i=1 d

2
i , the following theorem holds:

Theorem 2. For every ε, 0 < ε < 1, there is a positive constant n0(ε) such
that for every graph G with n > n0(ε) vertices, degree sequence d1, d2, . . . , dn,
and m > n1+ε edges, there is a subgraph G′ of G with at most (1 − ε

8 )m
edges such that

4cr(G′) ≥ cr(G)− 3
8

n∑
i=1

d2
i

Clearly in the special case above, Theorem 2 implies Theorem 1.

In order to prove Theorem 1 in general, we shall need the following:

Lemma 3. Let G be a graph with n vertices of degrees d1, d2, . . . , dn and
m edges. For any δ, 0 < δ < 1, let ∆ = ∆(δ) be the integer such that∑n
i=1 min(di,∆) < 2δm but

∑n
i=1min(di,∆ + 1) ≥ 2δm.

If m ≥ 45(1− δ)−2nlog2n, then

cr(G) ≥ 1
16

n∑
i=1

(min(di,∆))2

The proof of lemma 3 relies on a relation between the bisection width b(G)
and the crossing number cr(G) of a graph G. Namely, it uses the following
theorem by Pach, Shahrokhi, and Szegedy:

42



Theorem 4. Let G be a graph with n vertices of degrees d1, d2, . . . , dn.
Then

40 cr(G) ≥ b2(G)− 5
2

n∑
i=1

d2
i

Using lemma 3 one can show that any dense enough graph has the crossing
number bounded from below by a prefix sum of the degree squares. More
precisely, we can show the following lemma:

Lemma 5. Let G be a graph with n vertices and m edges, and let d1 ≤
d2 ≤ . . . ≤ dn denote the degree sequence sorted in monotone increasing
order. Let l be the integer such that

∑l−1
i=1 di < 4m/3 but

∑l
i=1 di ≥ 4m/3.

If m = Ω(nlog2n), then

cr(G) ≥
(

1
64
− o(1)

) l∑
i=1

d2
i

Using lemma 5 we may now prove Theorem 1 in the general case. The proof
will be along the same lines as the proof of Theorem 2.
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Presented paper by Pierre Fraigniaud, Amos Korman

Compact Ancestry Labeling Schemes for Trees of
Small Depth

(arxiv.org/PS cache/arxiv/pdf/0902/0902.3081v1.pdf)

Introduction

An ancestry labeling scheme labels the nodes of any tree in such a way
that ancestry queries between any two nodes (whether the first node is an
ancestor of the second) in a tree can be answered just by looking at their
corresponding labels. The common measure to evaluate the quality of an
ancestry labeling scheme is by its label size, that is the maximal number of
bits stored in a label, taken over all n-node trees. Known bounds on the
label size are log n+O(

√
log n) for upper bound and log n+O(log log n) for

lower bound.

The design of ancestry labeling schemes finds applications in XML search
engines. Article presents an ancestry labeling scheme of size log n+2 log d+
O(1), for the family of trees with at most n nodes and depth at most d.
It is motivated by the observation that the depth of a typical XML tree is
bounded from above by a small costant.

More formally

Definition 1. A rooted forest F is a collection of rooted trees. The depth
of F is the maximum depth of tree in F . For integers n and d, let F(n, d)
denote the family of all rooted forests with at most n nodes and depth
bounded from above by d.

Definition 2. An ancestry labeling scheme (M,D) for a family of rooted
forest F is composed of

• a marker algorithm M that assigns labels to nodes of a given forest
F ∈ F
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• a polynomial time decoder algorithm M that given two labels l1 and
l2 in the output domain of M, returns a boolean in {0, 1}.

These algorithms has to satisfy that if L(u) and L(v) denote labels assigned
by marker algorithm to two nodes u and v in some rooted forest F ∈ F ,
then

D(L(u), L(v)) = 1⇔ u is an ancestor of v in F.

Note that the decoder D is independent of the forest F .

Theorem 3. There exists an ancestry labeling scheme for the family of
rooted forests in F whose label size is log n+ 2 log d+O(1).

Informally the scheme performs as follows. We construct a set of intervals
U such that the nodes of any forest in F can be mapped to U , in a way
that ancestry relation can be answered using a simple interval containment
test, i.e. we make sure that u is an ancestor of v in some forest F if and
only if the interval associated with u contains the interval associated with
v. A label of a node in F is a pointer to an element in U and thus can be
encoded using log |U | bits. The construction of U is done by induction on
the number of nodes in the forest.

Ľuboš Korenčiak
208317@mail.muni.cz

Presented paper by Richard Cole, Kirstin Ost, Stefan Schirra

Edge-Coloring Bipartite Multigraphs in O(E log D)
Time

(http://www.springerlink.com/content/xj94c5n8406tykac/)

The aim of the paper is to show that a minimal edge-coloring of bipartite
multigraph can be computed in O(E logD) time. The result is based on an
algorithm for finding a matching in a regular bipartite graph in O(E) time.

The technique presented in the paper uses a divide and conquer approach:
They partition regular graph G into subgraphs that are recursively colored
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with different color sets using Euler splits and finding a matching.

An edge-coloring of a multigraph G = (V,E) with a vertex set V and edge
set E is a map c : E −→ N such such that no two adjacent edges have the
same color.

The number of colors used in a minimal edge-coloring for the class of bipar-
tite multigraphs is the maximum degree.

A matching in G is a subset M of E with the property that no two edges
have a common endpoint. M is said do be full if it contains, as an endpoint,
every vertex of G.

Euler partition of a graph G is a partition of its edges into open and closed
paths, such that each vertex of odd degree is at the end of exatly one open
path, and each vertex of even degree is at the end of no open path.

An Euler split of bipartite graph G splits G into two bipartite graphs
G1 = (V,E1) and G2(V,E2) where E1 and E2 are formed by scanning the
paths of an Euler partition of G and alternatively placing one edge into E1

and one edge into E2.

Chains are edges formed into paths of length at most s edges. Chains have
implicit direction and are vertex disjoint.

Theorem 1. The edge-coloring algorithm runs in time O(E logD).
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The Determinacy of Stochastic Games with
Reachability Objectives

(http://www.fi.muni.cz/usr/kucera/papers/stacs09.pdf)

Introduction
A stochastic game is basically moving a token in a graph. In a 2 1/2-player
game, there are 3 players involved: player � , player ♦ and the random
player © (the 1/2 player). The vertices in the graph are divided among
the players, each player decides the next move if the token gets into his
vertex. Players � and ♦ decide according to their strategies, player ©
decides randomly.

Every game needs a goal. For a game with a reachability objective, the goal
of the player � is to move the token to any vertex in a specified target set,
the goal of the player ♦ is to avoid it.

What is the highest probability of reaching the target, which the player �
can achieve using a fixed strategy against arbitrary strategy of the adver-
sary? And vice versa, what is the lowest probability of reaching the target,
which the player ♦ can force using a fixed strategy against arbitrary strat-
egy of player � ? If the answer is the same for both questions, then the
game is determined, it has a value. The player � cannot guarantee a higher
chance of hitting the target whereas the player ♦ cannot guarantee a lower
chance.

Another question is, whether there are optimal strategies for both play-
ers for a given game, whether a player gets the value of the game by one
fixed strategy or whether there is only an infinite sequence of strategies
approaching the value.

Stochastic games with reachability objectives are determined, we will give
simple proofs of the determinacy and discuss some subtle details of the prob-
lem.
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Definitions

Definition 1. A stochastic game is a tuple G = (V, 7→, (V�, V♦, V©), P rob)
where V is a finite or countably infinite set of vertices, 7→ ⊆ V ×V is a total
edge relation, (V�, V♦, V©) is a partition of V , and Prob is a probability
assignment which to each v ∈ V assigns a positive probability distribution
on the set of its outgoing transitions. We say that G is finitely branching if
for each v ∈ V there are only finitely many u ∈ V such that v 7→ u.

Definition 2. Let � ∈ {�,♦}. A strategy for player � is a function which
to each history wv ∈ V ∗V� assigns a probability distribution on the set of
outgoing edges of v.

The set of all strategies for player � and player ♦ is denoted Σ and Π,
respectively.

We say that a strategy τ is memoryless (M) if τ(wv) depends just on the
last vertex v, and deterministic (D) if τ(wv) is a Dirac distribution for
all wv (i.e. assigns probability 1 to one outgoing vertex and 0 to all other
outgoing vertices). Strategies that are not necessarily memoryless are called
history-dependent (H), and strategies that are not necessarily deterministic
are called randomized (R).

Definition 3. A σ-field over a set X is a set F ⊆ 2X that includes X and
is closed under complement and countable union.

A probability space is a triple (X,F ,P) where X is a set called sample space,
F is a σ − field over X, so that (X,F) is a measurable space and P is a
probability measure over (X,F), i.e. a function P : F → R≥0 such that,
for each countable collection {Xi}i∈I of pairwise disjoint elements of F ,
P(
⋃
i∈I Xi) =

∑
i∈I P(Xi), and moreover P(X) = 1.

Definition 4. A Markov chain is a tripleM = (M,−→, P rob) where M is
a finite or countably infinite set of states, −→⊆M ×M is a total transition
relation, and Prob is a function which to each s ∈ M assigns a positive
probability distribution over the set of its outgoing transitions.

Each finite path w in M determines a basic cylinder Run(M, w) which
consists of all runs that start with w.

To every s ∈M we associate the probability space (Run(M, s),F ,P) where
F is the σ-field generated by all basic cylinders Run(M, w) where w starts
with s, and P : F → R≥0 is the unique probability measure such that
P (Run(M, w)) =

∏m1
i=0 xi where w = s0, . . . , sm and si

xi−→ si+1 for every
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0 ≤ i < m (if m = 0, we put P(Run(M, w)) = 1).

Definition 5. Each pair of strategies (σ, π) ∈ Σ determines a unique play
of the game G, which is a Markov chain G(σ, π) where V + is the set of
states, and wu x−→ wuu iff u 7→ u′ and one of the following conditions holds:

• u ∈ V� and σ(wu) assigns x to u 7→ u′, where x > 0;

• u ∈ V♦ and π(wu) assigns x to u 7→ u′, where x > 0;

• u ∈ V© and Prob(u) assigns x to u 7→ u′, where x > 0

Let T ⊆ V be a set of target vertices. By Pσ,πv (Reach(T )) we denote the
probability of all runs w ∈ Run(G(σ, π), v) such that w visits some u ∈ T .
By Pσ,πv (Reachn(T )) we denote the probability of all runs that visit some
u ∈ T in first n steps.

Definition 6. A reachability objective is a pair (T,D ρ) where T ⊆ V ,
D∈ {>,≥}, and ρ ∈ [0, 1]. We define C ∈ {<,≤} as C = 4. We say that:

• σ ∈ Σ is (D ρ)− winning if Pσ,πv (Reach(T )) D ρ for all π ∈ Π;

• π ∈ Π is (C ρ)− winning if Pσ,πv (Reach(T )) C ρ for all σ ∈ Σ.

Definition 7. For a reachability game G:

• lower value of the game in vertex v is
h−v = supσ∈Σ infπ∈Π P

σ,π
v (Reach(T )),

• upper value of the game in vertex v is
h+
v = infπ∈Π supσ∈Σ P

σ,π
v (Reach(T )).

• We say that vertex v has a value val(v) iff h−v = h+
v , i.e.:

val(v) = supσ∈Σ infπ∈Π P
σ,π
v (Reach(T )) =

infπ∈Π supσ∈Σ P
σ,π
v (Reach(T )).

• We say that G is determined if all vertices have a value.

Claims

Theorem 8. Let G be an finite game and let (T,D ρ) be a reachabil-
ity objective. Every v ∈ V has a value and both player have optimal MD
(memoryless deterministic) strategy.
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Theorem 9. Let G be a finite branching game and let (T,D ρ) be a reach-
ability objective. Every v ∈ V has a value and player ♦ has an optimal
strategy.

Lemma 10. For every fixed vertex v ∈ V , we have that

∀ε > 0 ∃σ ∈ Σ ∃n ∈ N ∀π ∈ Π : Pσ,πv (Reachn(T )) > val(v)− ε

Theorem 11. Let G be a finite branching game and let (T,D ρ) be a
reachability objective. For each v ∈ V , either the player � has a (D ρ)-
winning strategy in v or the player ♦ has a (C ρ)-winning strategy in v.

Observation 12. In infinite branching games with reachability objective,
player ♦ does not have optimal strategies in general.

Martin Křivánek
set@mail.muni.cz

Presented paper by Omid Amini, Frédéric Mazoit, Nicolas Nisse, Stéphan
Thomassé

Submodular Partition Functions
(www-sop.inria.fr/members/Nicolas.Nisse/publications/bramble.pdf)

Introduction

Article shows a new proof of the duality between the bramble-number of a
graph and its tree-width. Their approach is based on a new definition of
submodularity on partition function. The proof does not rely on Menger’s
theorem, and thus greatly generalises the original one. One can also derive
all known dual notions of other classical width-parameters from it.

More formally

Let E be a finite set with at least two elements and F be a set of admissible
partitions of E.
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Definition 1. A partitioning-tree on E is a tree T in which the leaves
are identified with elements of E in a one-to-one way. T defines a set of
partitions of E, every edge e ∈ E(T ) defines a bipartition Te of E, every
vertex v ∈ V (T ) defines a partition Tv of E. Tree T is an admissible
partitioning-tree for F if {Tpartitions} ⊆ F .

Definition 2. A F-bramble is a set B of subsets of E such that for any
Xi, Xj ∈ B, Xi ∩Xj 6= ∅ and for any {E1, ..., Ek} ∈ F , there is Ei ∈ B. B is
principal if

⋂
Xi∈B 6= ∅.

Lemma 3. If there is a non-principal F-bramble, then there is no admis-
sible partitioning-tree for F .

The question is how to characterize the families F of partitions of E such
that it is an equivalence.

Definition 4. A partition function is a function Φ : {partitions of E} → N.
Let Φ be a partition function and let k ≥ 1. Let FΦ,k be the family of the
partitions P , with Φ(P ) ≤ k.

Definition 5. A k-partitioning-tree for Φ is an admissible partitioning-tree
for FΦ,k. A k-bramble for Φ is a FΦ,k-bramble.

Let Y be a subset of E. The partition

XXi→Y c := {X1 ∩ Y, ...,Xi−1 ∩ Y,Xi ∪ Y c, Xi+1 ∩ Y, ...,Xn ∩ Y }

is the partition obtained from X by pushing Xi to Y c.

Definition 6. A partition function Φ is submodular if, for any partitions
X = {X1, X2, ..., Xn},Y = {Y1, Y2, ..., Ym} and for every 1 ≤ i ≤ n and
1 ≤ j ≤ m:

Φ(X ) + Φ(Y) ≥ Φ(XXi→Yj
) + Φ(YYj→Xi

)

Definition 7. A partition function Φ is weakly submodular if, for any
partitions X = {X1, X2, ..., Xn},Y = {Y1, Y2, ..., Ym} and for every 1 ≤ i ≤
n and 1 ≤ j ≤ m:

• either there exists F such that Xi ⊆ F ⊆ (Yj \ Xi)c and Φ(X ) >
Φ(XXi→F )

• or Φ(Y) ≥ Φ(YYj→Xc
i
).
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Theorem 8. Let Φ be a weakly submodular partition function on a set E,
and let k ≥ 1.

• either there is a non-principal k-bramble for Φ,

• or there is a k-partitioning-tree for Φ.

Now we can use this theorem to prove many dual notions, for example:

Definition 9. The border function δ is defined by: δ(X ) is the set of
vertices incident to an edge in Xi and in Xj .

Lemma 10. |δ| is a submodular partition function.

If T is a k-partitioning-tree for |δ|, than (T, (δ(Tt))t∈V (T )) is a
tree-decomposition of width at most k − 1. We can compute a bramble
(in usual sense) of order at least k from any non-principal k-bramble for |δ|.

Robert Lukot’ka
lukotka@dcs.fmph.uniba.sk

Presented paper by Alexandr Kostochka, Dhruv Mubayi

When is an almost monochromatic K4 guaranteed
(http://www.math.uic.edu/ mubayi/papers/K4final.pdf)

The Ramsey number Rk(p) denotes the minimum n such that every k-
coloring of Kn results in a monochromatic Kp. We will examine a general-
ization of this parameter. A (p, q)-coloring of Kn is an edge-coloring such
that every copy of Kp is colored with at least q distinct colors. The min-
imum n such that every (p, q)-coloring of Kn with k colors does not exist
will be denoted as Rk(p, q).

Moreover, we will examine the related parameter f(n, p, q), which denotes
the minimum number of colors in a (p, q)-coloring of Kn.

It is well-known that Rk(4) < kO(k). This implies that for some constant c

f(n, 4, 2) >
c log n

log log n
.
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These facts also give the bounds for Rk(4, 3) and f(n, 4, 3). We will improve
these bounds through examining the special case Rk(2a, a+ 1).

Definition 1. A k-edge-colouring ξ of Kn is a (γ1, . . . , γk)-coloring if for
each i, the color i does not appear in any subgraph K2γi+2 whose edges are
colored with at most γi + 1 colors.

We show that if ξ is a (γ1, . . . , γk)-coloring of Kn and γ =
∑
i γi then

n < c(log γ)1000γ . We will show this with induction on γ and k.

Since a (2a, a+ 1)-coloring si an (a− 1, a− 1, . . . , a− 1)-coloring we get:

Theorem 2. Let c′ be a positive constant depending only on a. Then
Rk(2a, a+ 1) ≤ c′(log k)c

′k.

This gives a better bound for f(n, 2a, a+ 1):

Theorem 3. Let a ≥ 1 be a fixed integer. There is a constant depending
only on a such that for all n ≥ 2a

f(n, 2a, a+ 1) >
c log n

log log log n
.
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Circular Choosability Via Combinatorial
Nullstellensatz

(http://www.math.princeton.edu/~snorin/papers/circularnull.pdf)

This paper studies circular choosability of graphs, which is a combination
of two variations of graph colourings: circular colouring and list colouring.

A p-list assignment L of a graph G assigns to each vertex v of G a set
L(v) ⊆ {0, 1, . . . , p − 1} of permissible colours. We say that G is L-(p, q)-
colourable if G has a (p, q)-colouring h such that h(v) ∈ L(v) for each
vertex v of G. The circular list chromatic number χc,l(G) of a graph G is
the infimum of those real numbers t for which the following holds: for any
p, q and for any p-list assignment L with |L(v)| ≥ tq for each vertex v ∈ G,
the graph G is L-(p, q)-colourable.

Let D be an orientation of a graph G. A subgraph D′ of D is eulerian
if d+

D′(v) = d−D′(v) for each vertex v of G. An eulerian subgraph is called
odd (even) if it has odd (even) number of edges. Let EE(D) and EO(D),
respectively, denote the number of even and odd subgraphs of D.

We generalize a result of Alon and Tarsi and sketch a proof of the following
theorem.

Theorem 1. Let a graph G have an orientation D which has no odd directed
cycles. Let L be a p-list assignment of G such that for each vertex v of G,
|L(v)| = d+

D(v)(2q − 1) + 1. Then G is L-(p, q)-colourable.

The original result of Alon and Tarsi was proved for ordinary list colourings
under the assumption that G has an orientation D such that EE(D) 6=
EO(D) instead of having an orientation D without directed cycles. In the
proof of Theorem 1 we first generalize the concept of odd and even eulerian
subgraphs and then prove a straightforward generalization of the result of
Alon and Tarsi. In this proof, we use the Combinatorial Nullstellensatz
stated below.
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Theorem 2. Let F be a field and let f(x1, x2, . . . , xn) be a polynomial from
the ring F [x1, x2, . . . , xn]. Assume that the degree of f is equal to

∑n
j=1 tj

and the coefficient of
∏n
j=1 x

tj
j in f is nonzero. Then for any subsetsets

S1, S2, . . . , Sn of F satisfying |Sj | > tj there exist elements s1 ∈ S1, s2 ∈
S2, . . . , sn ∈ Sn such that

f(s1, s2, . . . , sn) 6= 0.

We illustrate usefulness of this theorem in an easy proof of the following
non-trivial result: Every 4-regular graph with one added edge contains a
cubic subgraph (not necessarily spanning).

Theorem 1 implies that ifG is a bipartite graph, then χc,l(G) ≤ 2dmad(G)/2e,
where mad(G) is the maximum average degree of a subgraph of G. Using
very similar techniques this result can be extended to the following theorem.

Theorem 3. Let G be a connected bipartite graph which is not a tree. Then
χc,l(G) ≤ mad(G).

Ondrej Morǐs
xmoris@fi.muni.cz

Presented paper by F. V. Fomin, P. A. Golovach, D. Lokshtanov, S.
Saurabh

Clique-width: On the Price of Generality
(http://www.ii.uib.no/∼daniello/papers/cliquewidth.pdf)

Introduction

By the celebrated result of Courcelle, every decision problem expressible in
monadic second order logic (MS2-logic) is fixed parameter tractable when
parameterized by the tree-width of the input graph. In particular, basic
problems like Graph Coloring, Edge Dominating Set and Hamilto-
nian Cycle are solvable in linear time on graphs of bounded tree-width.
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The analogue of Courcelle’s result holds for graphs of bounded clique-width
when the logical formulas do not use edge set quantifications (MS1-logic).
Despite of its generality, there are many problems expressible in MS2-logic
that cannot be expressed in MS1-logic. The most natural are perhaps Edge
Dominating Set, Graph Coloring, and Hamiltonian Cycle. There
are various algorithms solving these problems on an n-vertex graphs of
clique-width at most k in time O(nf(k)), where f is some function of k.

We show that the problems mentioned above are W[1]-hard parameterized
by clique-width – the first results distinguishing between tree-width and
clique-width parameterizations.

Definitions

A problem is called fixed parameter tractable (FPT) if it can be solved
in time f(k) · nc, where f is a computable function depending only on k
and c is some constant. The basic complexity class for fixed parameter
intractability is W[1]. To show a problem is W[1]-hard, one needs to exhibit
a parameterized reduction from a known W[1]-hard problem.

We consider finite undirected graphs without loops or multiple edges. Let
G be a graph, and k be a positive number. A k-graph is a graph whose
vertices are labeled by integers from {1, 2, . . . , k}. The k-graph consisting
of exactly one vertex labeled by some integer from {1, 2, . . . , k} is called an
initial k-graph.

Definition 1. The clique-width, cwd(G), of graph G is the smallest integer
k such that G can be constructed by means of repeated application of the
following four operations: (i) introduce – construction of an initial k-graph
labeled by i, denoted i(v), (ii) disjoint union – denoted by ⊕, (iii) relabel –
changing all labels i to j, denoted by ρi 7→j , (iv) join – connecting all vertices
labeled by i with all vertices labeled with j by edges, denoted by ηi,j .

It is a well-known that the bounded tree-width implies bounded clique-
width.

Theorem 2. [Corneil & Rotics, 2005] If graph G has tree-width at most t
then cwd(G) is at most k = 3 · 2t−1.

Graph Coloring

In this section, we rigorously prove that Graph Coloring is W[1]-hard
parameterized by clique width.
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Graph Coloring: The chromatic number of a graph G is the
smallest number of colors χ(G) needed to color the vertices of
G so that no two adjacent vertices share the same color.

Our reduction is from the exact version of the Equitable Coloring prob-
lem parameterized by the number r of colors used, and the tree-width of
the input graph. In this problem one is given a graph G and integer r and
asked whether G can be properly r-colored (with exactly r colors) in such a
way that the number of vertices in any two color classes differs by at most
1.

Theorem 3. Equitable Coloring is W[1]-hard parameterized by the
tree-width t of the input graph and the number of colors r.

On input (G, r) to Equitable Coloring, we construct an instance (G′, r′)
to Graph Coloring, where r′ = r + nr, such that the following lemmas
hold.

Lemma 4. If G has an equitable r-coloring ψ then G′ has an r′-coloring
φ.

Lemma 5. If G′ has an r′-coloring φ then G has an equitable r-coloring
ψ.

Lemma 6. If the tree-width of G is t, then the clique-width of G′ is at most
k = 3 · 2t−1 + 7r+ 3. Furthermore, an expression tree of width k for G′ can
be computed in FPT time.

Lemmas 1, 2 and 3 together imply the following theorem.

Theorem 7. The Graph Coloring problem is W[1]-hard when parame-
terized by clique-width. Moreover, this problem remains W[1]-hard even if
the expression tree is given.

Edge Dominating Set and Hamiltonian Cycle Problem

In this section, we state (without proof) that Edge Dominating Set
and Hamiltonian Cycle problems are also W[1]-hard parameterized by
clique-width.

Edge Dominating Set: Given a graph G, find a minimum set
of edges X ⊆ E(G) such that every edge of G is either included
in X or it is adjacent to at least one edge of X. The set X is
called an edge dominating set of G.
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Hamiltonian Cycle: Given a graph G, check whether there
exists a cycle passing through every vertex of G.

Theorem 8. The Edge Dominating Set problem and the Hamilto-
nian Cycle problem are W[1]-hard when parameterized by clique-width.
Moreover, these problems remain W[1]-hard even if the expression tree is
given.
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Charles University, Prague
Czech Republic
bernard@kam.mff.cuni.cz

65



Robert Lukot’ka
Comenius University, Bratislava
Slovakia
lukotka@dcs.fmph.uniba.sk
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