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Abstract

The Surjective Homomorphism problem is to test whether
a given graph G called the guest graph allows a vertex-surjective
homomorphism to some other given graph H called the host
graph. The bijective and injective homomorphism problems
can be formulated in terms of spanning subgraphs and sub-
graphs, and as such their computational complexity has been
extensively studied. What about the surjective variant? Be-
cause this problem is NP-complete in general, we restrict the
guest and the host graph to belong to graph classes G and H,
respectively. We determine to what extent a certain choice
of G and H influences its computational complexity. Our re-
sults show that the problem is polynomial-time solvable if H
is the class of paths, whereas it is NP-complete if G is the
class of paths. Moreover, we show that the problem is even
NP-complete on many other elementary graph classes, namely
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linear forests, unions of complete graphs, cographs, proper in-
terval graphs, split graphs and trees of pathwidth at most
2. In contrast, we prove that the problem is fixed-parameter
tractable in k if G is the class of trees and H is the class of
trees with at most k leaves, or if G and H are equal to the
class of graphs with vertex cover number at most k.

1 Introduction

We consider undirected finite graphs that are simple, i.e., have no
loops and no multiple edges. A graph is denoted G = (VG, EG),
where VG is the set of vertices and EG is the set of edges. A homo-
morphism from a graph G to a graph H is a mapping f : VG → VH

that maps adjacent vertices of G to adjacent vertices of H, i.e.,
f(u)f(v) ∈ EH whenever uv ∈ EG. Graph homomorphisms are
widely studied within the areas of graph theory and algorithms;
for a survey we refer to the monograph of Hell and Nešetřil [17].
The Homomorphism problem is to test whether there exists a ho-
momorphism from a graph G called the guest graph to a graph H
called the host graph. If H is restricted to be in the class of com-
plete graphs (graphs with all possible edges), then this problem is
equivalent to the Coloring problem. The latter problem is to test
whether a graph G allows a k-coloring for some given k, i.e., a map-
ping c : VG → {1, . . . , k}, such that c(u) 6= c(v) whenever uv ∈ EG.
This is a classical NP-complete problem [14]. Hence, the Homo-
morphism problem is NP-complete in general, and it is natural to
restrict the input graphs to belong to some special graph classes.

We let G denote the class of guest graphs and H the class of
host graphs that are under consideration, and denote the correspond-
ing decision problem by (G,H)-Homomorphism. If G or H is the
class of all graphs, then we use the notation “−” to indicate this. If
G = {G} or H = {H}, we write G and H instead of G and H, respec-
tively, The Hell-Nešetřil dichotomy theorem [16] states that (−, H)-
Homomorphism is solvable in polynomial time if H is bipartite, and
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NP-complete otherwise. In the context of graph homomorphisms, a
graph F is called a core if there exists no homomorphism from F
to any proper subgraph of F . Grohe [15] showed that under the as-
sumption FPT 6= W[1], the (G,−)-Homomorphism problem can be
solved in polynomial time if and only if all cores of the graphs in G
have bounded treewidth.

As a homomorphism f from a graph G to a graph H is a (ver-
tex) mapping, we may add further restrictions, such as requiring it
to be bijective, injective, or surjective i.e., for each x ∈ VH there
exists exactly one, at most one, or at least one vertex u ∈ VG with
f(u) = x, respectively. The decision problems corresponding to the
first and second variant are known as the Spanning Subgraph Iso-
morphism and Subgraph Isomorphism problem, respectively. As
such, these two variants have been well studied in the literature. For
example, the bijective variant contains the problem that is to test
whether a graph contains a Hamiltonian cycle as a special case. In
our paper, we research the third variant, which leads to the following
decision problem:

Surjective Homomorphism
Instance: two graphs G and H.
Question: does there exist a surjective homomorphism from G to H?

If the guest G is restricted to a graph class G and the host H to a
graph class H, then we denote this problem by Surjective (G,H)-
Homomorphism. Fixing the host side to a single graph H yields
the Surjective (−, H)-Homomorphism problem. This problem
is NP-complete already when H is nonbipartite. This follows from
a simple reduction from the corresponding (−, H)-Homomorphism
problem, which is NP-complete due to the Hell-Nešetřil dichotomy
theorem [16]; we replace an instance graph G of the latter problem
by the disjoint union G + H of G and H, and observe that G allows
an homomorphism to H if and only if G + H allows a surjective
homomorphism to H. For bipartite host graphs H, the complexity
classification of Surjective (−, H)-Homomorphism is still open,
although some partial results are known. For instance, the problem
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can be solved in polynomial time whenever H is a tree. This follows
from a more general classification that also includes trees in which the
vertices may have self-loops [13]. On the other hand, there exist cases
of bipartite host graphs H for which the problem is NP-complete,
e.g., when H is the graph obtained from a 6-vertex cycle with one
distinct path of length 3 added to each of its six vertices [2]. Recently,
the Surjective (−, H)-Homomorphism problem has been shown
to be NP-complete when H is a 4-vertex cycle with a self-loop in
every vertex [19]. Note that in our paper we only consider simple
graphs. For a survey on the Surjective (−, H)-Homomorphism
problem from a constraint satisfaction point of view we refer to the
paper of Bodirsky, Kara and Martin [2]. Below we discuss some other
concepts that are closely related to surjective homomorphisms.

A homomorphism f from a graph G to a graph H is locally sur-
jective if f becomes surjective when restricted to the neighborhood
of every vertex u of G. The corresponding decision is called the
Role Assignment problem which has been classified for any fixed
host H [10]. Any locally surjective homomorphism is surjective if
the host graph is connected but the reverse implication is not true
in general. For more on locally surjective homomorphisms and the
locally injective and bijective variants, we refer to the survey of Fiala
and Kratochv́ıl [8].

Let H be an induced subgraph of a graph G. Then a homomor-
phism f from a graph G to H is a retraction from G to H if f(h) = h
for all h ∈ VH . In that case we say that G retracts to H. By defini-
tion, a retraction from G to H is a surjective homomorphism from
G to H. Retractions are well studied; see e.g. the recent complexity
classification of Feder et al. [6] for the corresponding decision prob-
lem when H is a fixed pseudoforest. In particular, polynomial-time
algorithms for retractions have been proven to be a useful subrou-
tine for obtaining polynomial-time algorithms for the Surjective
(−, H)-Homomorphism problem [13].

We emphasize that a surjective homomorphism is vertex-surjective
as opposed to the stronger condition of being edge-surjective. A ho-
momorphism from a graph G to a graph H is called edge-surjective or
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a compaction if for any edge xy ∈ EH there exists an edge uv ∈ EG

with f(u) = x and f(v) = y. If f is a compaction from G to H,
we also say that G compacts to H. The Compaction problem is to
test whether a graph G compacts to a graph H. Vikas [20, 21, 22]
determined the computational complexity of (−, H)-Compaction
for several classes of fixed host graphs H. Very recently, Vikas [23]
considered (−, H)-Compaction for guest graphs belonging to some
restricted graph class.

Our Results. We study the Surjective (G,H)-Homomorphism
problem for several graph classes G and H. We show that the com-
plexity of this problem for paths changes from being polynomial-time
solvable to NP-complete if we restrict the guests to be paths instead
of the hosts. We also show that the problem is NP-complete when
both G and H are restricted to trees of pathwidth at most 2, and
when both G andH are linear forests. These results are in contrast to
the polynomial-time result of Grohe [15] on (G,−)-Homomorphism
for graph classes G that consists of graphs, the cores of which have
bounded treewidth. They are also in contrast to the polynomial-time
result [13] on Surjective (−, H)-Homomorphism when H is any
fixed tree.

Due to the hardness for graphs of bounded treewidth, it is nat-
ural to consider other width parameters such as the clique-width
of a graph. For this purpose we first consider the class of com-
plete graphs that are exactly those graphs that have clique-width
1. We observe that the Surjective (G,H)-Homomorphism can be
solved in polynomial time when G is the class of complete graphs,
whereas the problem becomes NP-complete when we let G and H
consist of the unions of complete graphs. We then focus on graphs
that have clique-width at most two. This graph class is equal to
the class of cographs [4]. There exist only a few natural problems
that are difficult on cographs, We prove that Surjective (G,H)-
Homomorphism, where G and H are equal to the class of connected
cographs, is one of these. We also consider proper interval graphs.
This graph class has unbounded tree-width and contains the classes

5



of complete graphs and paths. Because they are “path-like”, often
problems that are difficult for general graphs are tractable for proper
interval graphs. In an attempt to generalize our polynomial-time re-
sult for Surjective (G,H)-Homomorphism when G is the class
of complete graphs, or when H is the class of paths, we consider
connected proper interval graphs. It turns out that Surjective
(G,H)-Homomorphism is NP-complete even when G and H consist
of these graphs. Our last hardness result shows that the problem
is also NP-complete when G and H are equal to the class of split
graphs. All hardness results can be found in Section 3.

To complement our hardness results, we show in Section 4 that
Surjective (G,H)-Homomorphism is fixed-parameter tractable in
k, when G is the class of trees and H is the class of trees with at
most k leaves, and also when G and H consist of graphs with vertex
cover number at most k. The latter result adds further evidence that
decision problems difficult for graphs of bounded treewidth may well
be tractable if the vertex cover number is bounded; also see e.g. [1, 5,
7, 9]. Moreover, the vertices of such graphs can be partitioned into
two sets, one of them has size bounded by the vertex cover number
and the other one is an independent set. As such, they resemble
split graphs with bounded clique number. We refer to Table 1 for
a summary of our results. In this table, pw and vc denote the
pathwidth and the vertex cover number of a graph, respectively. In
Section 2 we explain these notions and the complexity class FPT.
There, we also give the definitions of all the aforementioned graph
classes.
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2 Definitions and Preliminaries

Let G be a graph. The open neighborhood of a vertex u ∈ VG is
defined as NG(u) = {v | uv ∈ EG}, and its closed neighborhood is
defined as NG[u] = N(u) ∪ {u}. The degree of a vertex u ∈ VG is
denoted dG(u) = |NG(u)|. The distance distG(u, v) between a pair
of vertices u and v of G is the number of edges of a shortest path
between them. The distance between a vertex u and a set of vertices
S ⊆ VG is distG(u, S) = min{distG(u, v)|v ∈ S}. We may omit
subscripts if this does not create any confusion. The diameter of G
is defined as diam(G) = max{distG(u, v)|u, v ∈ VG}. Let S ⊆ VG.
Then the graph G − S is the graph obtained from G by removing
all vertices in S. If S = {u}, we also write G − u. The subgraph of
G that is induced by S has vertex set S and edges uv if and only if
uv ∈ EG. We denote this subgraph by G[S].

A graph is an interval graph if intervals of the real line can be as-
sociated with its vertices in such a way that two vertices are adjacent
if and only if their corresponding intervals overlap. An interval graph
is proper if it has an interval representation, in which no interval is
properly contained in any other interval. The disjoint union of two
graphs G and H is denoted G+H, and the disjoint union of r copies
of G is denoted rG. A linear forest is the disjoint union of a collec-
tion of paths. We denote the path on n vertices by Pn. A graph is a
cograph if it does not contain P4 as an induced subgraph. A clique
is the vertex set of a complete graph. A vertex set is independent if
its vertices are mutually non-adjacent. A graph is a split graph if its
vertex set can be partitioned into a clique and an independent set.

A tree decomposition of a graph G is a pair (X , T ) where T is a
tree and X = {Xi | i ∈ VT } is a collection of subsets (called bags) of
VG such that the following three conditions are satisfied:

1.
⋃

i∈VT
Xi = VG;

2. for each edge xy ∈ EG, the vertices x, y are in a bag Xi for
some i ∈ VT ;

8



3. for each x ∈ VG, the set {i | x ∈ Xi} induces a connected
subtree of T .

The width of tree decomposition (X , T ) is maxi∈VT
{|Xi| − 1}. The

treewidth of a graph G, denoted tw(G), is the minimum width over
all tree decompositions of G. If in these two definitions we restrict the
tree T to be a path, then we obtain the notions of path decomposition
and pathwidth of G denoted pw(G).

For a graph G, a set S ⊆ VG is a vertex cover of G, if every edge
of G has at least one of its two endvertices in S. Let vc(G) denote
the vertex cover number, i.e., the minimum size of a vertex cover of
G.

We use the following well-known notion in parameterized com-
plexity, where one considers the problem input as a pair (I, k), where
I is the main part and k the parameter; also see the text book of
Flum and Grohe [11]. A problem is fixed parameter tractable if an
instance (I, k) can be solved in time O(f(k)nc), where f denotes a
computable function, n denotes the size of I, and c is a constant
independent of k. The class FPT is the class of all fixed-parameter
tractable decision problems.

We finish this section with giving the polynomial-time results
from Table 1.

Proposition 1. The Surjective (G,H)-Homomorphism problem
can be solved in polynomial time in the following two cases:

(i) G is the class of complete graphs and H is the class of all graphs;

(ii) G is the class of all graphs and H is the class of paths.

Proof. We first prove (i). Suppose that we are given a guest com-
plete graph G and a host graph H. Then there exists a surjective
homomorphism from G to H if and only if H is a complete graph
with the same number of vertices as G.

We now prove (ii). Suppose that we are given a guest graph G
with k connected components G1 . . . , Gk for some k ≥ 1, and a host
path P` for some ` ≥ 1. If ` = 1, then there exists a surjective
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homomorphism from G to P` if and only if each Gi consists of one
vertex. If ` ≥ 2, then there exists a surjective homomorphism from
G to P` if and only if i) G is bipartite and ii)

∑k
i=1 diam(Gi)+k ≥ `.

Both conditions can be verified in polynomial time, and the result
follows.

3 Hard Cases

In contrast to case (ii) of Proposition 1, where the host graphs are
assumed to be paths, our problem becomes difficult when the guest
graphs are restricted to paths. Our next theorem shows this and the
other hardness results of Table 1.

Theorem 1. The Surjective (G,H)-Homomorphism problem is
NP-complete in the following six cases:

(i) G is the class of paths and H is the class of all graphs;

(ii) G = H is the class of linear forests;

(iii) G = H is the class of disjoint unions of complete graphs;

(iv) G = H is the class of connected cographs;

(v) G = H is the class of trees of pathwidth at most two;

(vi) G = H is the class of split graphs;

(vii) G = H is the class of connected proper interval graphs.

Proof. We first prove (i). We reduce from the well-known problem
Hamiltonian Path, which is NP-complete [14]. An n-vertex graph
H has a Hamiltonian path if and only if there exists a surjective
homomorphism from Pn to H. This proves (i).

For showing (ii)-(vii) we need some extra terminology. We say
that a multiset A = {a1, . . . , an} of integers is (m, B)-positive if
n = 3m,

∑n
i=1 ai = mB and ai > 0 for i = 1, . . . , n. A 3-partition of
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a multiset A = {a1, . . . , an} that is (m, B)-positive for some integers
m, B is a partition S1, S2, . . . , Sm of A such that for 1 ≤ j ≤ m,
|Sj | = 3 and

∑
ai∈Sj

ai = B. This leads to the problem:

3-Partition
Instance: an (m, B)-positive multiset A = {a1, . . . , an} for some
integers m, B;
Question: does A have a 3-partition?

The 3-Partition problem is known to be NP-complete [14] in the
strong sense, i.e., it remains hard even if all integers in the input
are encoded in unary. This enables us to reduce from this problem
in order to show NP-completeness in the cases (ii)-(vii). In each of
these six cases we assume that A = {a1, . . . , an} is a (m, B)-positive
multiset for some integers m, B. We now prove (ii)-(vii).

(ii) For i = 1, . . . , n, let pi = ai + B, and let q = 4B. Let G be
the linear forest G1 + · · · + Gn, where Gi is isomorphic to Ppi

for
i = 1, . . . , n. Let H be the linear forest H1 + · · · + Hm = mPq. We
claim that A has a 3-partition if and only if there exists a surjective
homomorphism from G to H.

Suppose that S1, . . . , Sm is a 3-partition of A. For each 1 ≤ j ≤
m, we consider the connected components Gi1 , Gi2 , Gi3 of G such
that Sj = {ai1 , ai2 , ai3}. We map the vertices of Gi1 to the first pi1

vertices of Hj according to the path order, and similarly the vertices
of Gi2 to the next pi2 vertices of Hj , and the vertices of Gi3 to the
last pi3 vertices of Hj . Because pi1 +pi2 +pi3 = ai1 +ai2 +ai3 +3B =
4B = q for i = 1, . . . , n, we obtain a surjective homomorphism from
G to H in this way.

Now suppose that f is a surjective homomorphism from G to H.
We observe that |VG| = |VH | = 4mB. Hence, f is also injective.
Because f is a homomorphism, f must map all vertices of each con-
nected component of G to the same connected component of H. Let
1 ≤ j ≤ m, and let Gi1 , . . . , Gis be the connected components of G
that are mapped to Hj . Because |VHj

| = 4B and every connected
component of G contains at least B + 1 vertices, we find that s ≤ 3.
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Figure 1: The trees G and H constructed in the proof of (v).

Because G has 3m connected components, we then find that s = 3.
Because f is injective, ai1 +ai2 +ai3 +3B = pi1 +pi2 +pi3 = q = 4B.
Hence, ai1 +ai2 +ai3 = B. This means that the partition S1, . . . , Sm

of A defined by Sj = {ai1 , ai2 , ai3} for j = 1, . . . ,m is a 3-partition
of A. This completes the proof of (ii).

(iii) We use all arguments from the proof of (ii) after replacing each
path in G and H by a clique of the same size.

(iv) In the graphs G and H from the proof of (ii) we replace each
path by a clique of the same size. We also add a vertex v in G
adjacent to all other vertices of G, and a vertex x in H adjacent to
all other vertices of H. The resulting graphs are connected cographs.
We observe that every homomorphism maps v to x. To finish the
proof we use the same arguments as the ones used to prove (ii).
(v) For i = 1, . . . , n, let pi = ai + B, and let q = 4B. We construct
two trees G and H. We first construct G:

• for i = 1, . . . , n, introduce pi vertices u
(i)
1 , . . . , u

(i)
pi and a vertex

vi adjacent to u
(i)
1 , . . . , u

(i)
pi ;

• add a new vertex w and make it adjacent to v1, . . . , vn.

We now construct H:
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• for j = 1, . . . ,m, introduce q vertices x
(j)
1 , . . . , x

(j)
q and a vertex

yj adjacent to x
(j)
1 , . . . , x

(j)
q ;

• add a new vertex z and make it adjacent to y1, . . . , ym.

The trees G and H are displayed in Figure 1. For G we take the
path decomposition with bags {u(i)

h , vi, w} to find that pw(G) ≤ 2.
Similarly, we find that pw(H) ≤ 2. We claim that A has a 3-partition
if and only if there is a surjective homomorphism from G to H.

First suppose that S1, . . . , Sm is a 3-partition of A. We define f as
follows. We set f(w) = z. Then for j = 1, . . . ,m, we consider the set
Sj = {ai1 , ai2 , ai3}. We let f map the vertices vi1 , vi2 , vi3 to yj . Then
we let f map the vertices u

(i1)
1 , . . . , u

(i1)
pi1

consecutively to the first pi1

vertices of the set {x(j)
1 , . . . , x

(j)
q }, the vertices u

(i2)
1 , . . . , u

(i2)
pi2

to the
next pi2 vertices of this set, and finally, the vertices u

(i3)
1 , . . . , u

(i3)
pi3

to
the last pi3 vertices of the set. Because pi1 + pi2 + pi3 = ai1 + ai2 +
ai3 + 3B = 4B = q, we find that f is a surjective homomorphism
from G to H.

Now suppose that f is a surjective homomorphism from G to H.
We observe that f(w) = z, because all vertices of G must be mapped
at distance at most two from f(w). Consequently, f maps every v-
vertex to a y-vertex, and every u-vertex to an x-vertex. The number
of u-vertices is p1+. . .+pn = a1+. . .+an+nB = 4mB, which is equal
to the number of x-vertices. Hence f maps the u-vertices bijectively
to the x-vertices. Moreover, if f(vi) = yj , then f maps the vertices
u

(i)
1 , . . . , u

(i)
pi to the vertices from the set {x(j)

1 , . . . , x
(j)
q }. For j =

1, . . . ,m, let vi1 , . . . , vis
be the vertices mapped to yj . Because pi >

B for all 1 ≤ i ≤ n, we find that s ≤ 3. Then, because n = 3m, we
conclude that s = 3. Because f maps bijectively {u(i1)

1 , . . . , u
(i1)
pi1
} ∪

{u(i2)
1 , . . . , u

(i2)
pi2
} ∪ {u(i3)

1 , . . . , u
(i3)
pi3
} to {x(j)

1 , . . . , x
(j)
q }, we find that

ai1 + ai2 + ai3 + 3B = pi1 + pi2 + pi3 = q = 4B, and consequently,
ai1 +ai2 +ai3 = B. We set Sj = {ai1 , ai2 , ai3}. It remains to observe
that S1, . . . , Sm is a 3-partition of A. This completes the proof of
(v).
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Figure 2: The split graphs G and H constructed in the proof of (vi).

(vi) For i = 1, . . . , n, let pi = ai + B, and let q = 4B. We construct
two graphs G and H. We first construct G:

• for i = 1, . . . , n, introduce pi vertices u
(i)
1 , . . . , u

(i)
pi and a vertex

vi adjacent to u
(i)
1 , . . . , u

(i)
pi ;

• joint all u-vertices by edges pairwise to obtain a clique of size
4mB.

We construct H as follows:

• for j = 1, . . . ,m, introduce q vertices x
(j)
1 , . . . , x

(j)
q and vertices

y
(1)
j , y

(2)
j , y

(3)
j adjacent to x

(j)
1 , . . . , x

(j)
q ;

• joint all x-vertices by edges pairwise to obtain a clique of size
4mB.

We observe that G and H are split graphs, also see Figure 2. We
claim that A has a 3-partition if and only if there is a surjective
homomorphism from G to H.

First suppose that S1, . . . , Sm is a 3-partition of A. We define f
as follows. For j = 1, . . . ,m, we consider the set Sj = {ai1 , ai2 , ai3}.
We let f map the vertices vi1 , vi2 , vi3 to y

(1)
j , y

(2)
j , y

(3)
j respectively.

Then we let f map the vertices u
(i1)
1 , . . . , u

(i1)
pi1

to the first pi1 vertices
of the set {x(j)

1 , . . . , x
(j)
q }, the vertices u

(i2)
1 , . . . , u

(i2)
pi2

to the next pi2
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u
(1)
1

u(1)
p1 u

(2)
1

u(2)
p2

· · ·
u

(n)
1

u(n)
pn

U1 U2

Un

G

Q2

x
(1)
1

x(1)
q x

(2)
1

x(2)
q

· · ·
x

(m)
1

x(m)
q

X(1) X(2) X(m)

H

Figure 3: The proper interval graphs G and H constructed in the
proof of (vii).

vertices of this set, and finally, the vertices u
(i3)
1 , . . . , u

(i3)
pi3

to the last
pi3 vertices of the set. Because pi1 +pi2 +pi3 = ai1 +ai2 +ai3 +3B =
4B = q, we find that f is a surjective homomorphism from G to H.

Now suppose that f is a surjective homomorphism from G to
H. Observe that |VG| = |VH |. Hence, f is a bijection. The ho-
momorphism f maps any clique of G to a clique of the same size
in H. It follows that all u-vertices of G are mapped to x-vertices
of H, and all v-vertices of G are mapped to y-vertices of H. For
j = 1, . . . ,m, let vi1 , vi2 , vi3 be the vertices mapped to y

(1)
j , y

(2)
j , y

(3)
j

respectively. Then the vertices u
(i1)
1 , . . . , u

(i1)
pi1

, u
(i2)
1 , . . . , u

(i2)
pi2

and
u

(i3)
1 , . . . , u

(i3)
pi3

are mapped bijectively to the vertices x
(j)
1 , . . . , x

(j)
q .

Therefore, a1 + a2 + a3 + 3B = p1 + p2 + p3 = q = 4B and
a1 + a2 + a3 = B. We set Sj = {ai1 , ai2 , ai3}, and it remains to
observe that S1, . . . , Sm is a 3-partition of A. This completes the
proof of (vi).

(vii) For i = 1, . . . , n, let pi = 6m2(ai + B), and let q = 24m2B. We
construct two graphs G and H. We first construct G:

• for i = 1, . . . , n, construct a clique Ui on pi vertices u
(i)
1 , . . . , u

(i)
pi ;

• for i = 2, . . . , n, join u
(i−1)
pi−1 and u

(i)
1 by a path Qi of length

2m− 1.

15



Then we construct H:

• for j = 1, . . . ,m, construct a clique X(j) on q vertices
x

(j)
1 , . . . , x

(j)
q ;

• for j = 2, . . . ,m, join x
(j−1)
q and x

(j)
1 by an edge.

We observe that G and H are proper interval graphs, also see Fig-
ure 3. We claim that A has a 3-partition if and only if there exists a
surjective homomorphism from G to H.

First suppose that S1, . . . , Sm is a 3-partition of A. We partition
each X(j) into three cliques Xi1 ∪Xi2 ∪Xi3 of size pi1 , pi2 , and pi3 ,
respectively, corresponding to Sj = {ai1 , ai2 , ai3}; this is possible
because |X(j)| = q = 24m2B = 6m2(ai1 + ai2 + ai3 + 3B) = pi1 +
pi2 + pi3 ; We will determine a homomorphism f from G to H such
that f is a bijection from Ui to Xi for i = 1, . . . , n. Hence, this
property will ensure that f is surjective. In order to do this, we
must show that we do not violate the definition of a homomorphism
with respect to the remaining vertices of G; note these remaining
vertices are the inner vertices of the Q-paths. We therefore define f
inductively as follows.

Let i = 1. Assume that a1 ∈ Sj . We let f map the vertices of U1

to the vertices of X1 bijectively in an arbitrary order.
Let i ≥ 2 and suppose that f is constructed for all vertices of Us

and Qs for all 1 ≤ s ≤ i − 1. Let y = f(u(i−1)
pi−1 ). Because H has

diameter at most 2m−1, we find that y is at distance at most 2m−1
from the set Xi. Consider the subgraph H ′ of H that contains Xi and
a shortest path between y and Xi. Because |Xi| ≥ 2m, we find that
H ′ contains a (y, z)-path of length 2m − 1 for some vertex z ∈ Xi.
Recall that y = f(u(i−1)

pi−1 ). We map consecutively the vertices of the
(u(i−1)

pi−1 , u
(i)
1 )-path Qi of length 2m−1 to the vertices of P in the path

order. Note that f(u(i)
1 ) = z. Then we map the vertices u

(i)
2 , . . . , u

(i)
pi

to the vertices of Xi \ {z} bijectively and in an arbitrary order. In
this way we ensure that f is a surjective homomorphism from G to
H.
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Now suppose that f : VG → VH is a surjective homomorphism.
Because f is a homomorphism, f maps injectively every clique of G
to a clique in H. Because pi ≥ 3 for all 1 ≤ i ≤ n, we then find that
f cannot map a clique Ui to an edge x

(j−1)
q x

(j)
1 . Hence, f maps Ui

injectively to some clique X(j) of H.
Let 1 ≤ j ≤ m, and let {i1, . . . , is} be the set of all indices

that correspond to the U -cliques that f maps to Xj . Suppose that
pi1 + . . .+pis < q. Then, 6m2(ai1 + . . .+ais +sB) = pi1 + . . .+pis <
q = 24m2B. This means that ai1 + . . .+ais

+sB ≤ 3. Consequently,
q−(pi1 + . . .+pis

) ≥ 6m2. Hence, f maps at least 6m2 inner vertices
of the paths Qi to X(j). However, the total number of these vertices
is (n − 1)(2m − 2) = (3m − 1)(2m − 2) < 6m2, a contradiction.
This means that pi1 + . . . + pis ≥ q. Because the same claim holds
for all 1 ≤ j ≤ m, and p1 + · · · + pn = 6m2(a1 + . . . + an + nB) =
6m2(mB+3mB) = 24m3B = mq, we conclude that pi1+. . .+pis

= q.
Because 6m2(ai1 + . . .+ais

+sB) = pi1 + . . .+pis
= q = 24m2B and

ai1 + . . .+ais
> 0, we find that s ≤ 3. Then, because the same claim

holds for all 1 ≤ j ≤ m, and p1+· · ·+pn = 6m2(a1+. . .+an+nB) =
mq = 24m3B, we find that s = 3 and ai1 + ai2 + ai3 = B. We set
Sj = {ai1 , ai2 , ai3}. It remains to observe that S1, . . . , Sm is a 3-
partition of A. This completes the proof of (vii).

4 Tractable Cases

By Theorem 1 (v), Surjective Homomorphism is NP-complete
when G and H are restricted to be trees. Here, we prove that the
problem is FPT for trees when parameterized by the number of leaves
in H. We first need some additional terminology. Let T be a tree.
Then we may fix some vertex of T and call it the root of T . We
observe that the root defines a parent-child relation between adjacent
vertices. This enables us to define for a vertex u of T the tree Gu,
which is the subtree of T that is induced by u and all its descendants
in T ; we fix u to be the root of Gu. For a child v of u, we let Guv

denote the subtree of G induced by u and the set of all descendants
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of v in T ; we fix u to be the root of Guv.

Theorem 2. Testing if there is a surjective homomorphism from an
n-vertex tree G to an m-vertex tree H with k leaves can be done in
O(22knm2) time.

Proof. We use dynamic programming. If H has one vertex the claim
is trivial. Assume that H has at least one edge. Let L be the set of
the leaves of H. First, we fix a root r of G. For each vertex u ∈ VG,
we construct a table that contains a number of records R = (x, S)
where x ∈ VH and S ⊆ L. A pair (x, S) is a record for u if and only
if there exists a homomorphism h from Gu to H such that h(u) = x
and S ⊆ h(VGu

). We also construct a similar table for each edge
uv ∈ EG. Then a pair (x, S) is a record for uv if and only if there
exists a homomorphism h from Guv to H such that h(u) = x and
S ⊆ h(VGuv ). The key observation is that a homomorphism f from
G to H is surjective if and only if L ⊆ f(VG), i.e., if and only if the
table for r contains at least one record (z, L).

We construct the tables as follows. We start with the leaves in
G not equal to r (should r be a leaf). Their tables are constructed
straightforwardly. Suppose that we have not constructed the table
for a vertex u, while we have constructed the tables for all children
v1, . . . , vp of u. Then we first determine the table for each edge uvi

by letting it consist of all records (x, S) such that

• (y, S) with y ∈ NH(x) is in the table for vi;

• x ∈ L and (y, S \ {x}) with y ∈ NH(x) is in the table for vi.

To construct the table for u, we consecutively construct auxiliary
tables for i = 1, . . . , s. The table for i = 1 is the table for uv1. The
table for i ≥ 2 consists of the records (x, S) such that S = S′ ∪ S′′,
(x, S′) is in the table for i−1 and (x, S′′) is in the table for uvi. The
table for u is the table constructed for i = s.

The correctness of the algorithm follows from its description. We
observe that each table contains at most m2k records and can be
constructed in O(22k ·m2) time. Because we construct O(n) tables
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u1 u2 us−1 us
· · ·

· · ·

U1 U2 Us−1 Us

S

I

N(X1) = Us+1 N(Xr) = Up

G

v1 v2 vt−1 vt
· · ·

· · ·

W1 W2 Wt−1 Wt

T

VH \ T

Wt+1 Wq

H

Figure 4: The graphs G and H as considered in the proof of Theo-
rem 3.

(including the auxiliary ones), our algorithms runs in O(22k · nm2)
time. This completes the proof of Theorem 2.

We now prove that Surjective Homomorphism is FPT when
parameterized by the vertex cover number of G and H. The follow-
ing approach has been successful before [7, 9]. The idea is to reduce a
problem to an integer linear programming problem that is FPT when
parameterized by the number of variables. Therefore, we consider the
p-Variable Integer Linear Programming Feasibility prob-
lem that has as input a q × p matrix A with integer elements and
an integer vector b ∈ Zq and that is to decide whether there exists
a vector x ∈ Zp such that A · x ≤ b. Lenstra [18] showed that this
problem is FPT when parameterized by p. The best running time is
due to Frank and Tardos [12].

Lemma 1 ([12]). The p-Variable Integer Linear Program-
ming Feasibility problem can be solved using O(p2.5p+o(p) ·L) arith-
metic operations and space polynomial in L, where L is the number
of bits of the input.

Theorem 3. Testing if there is a surjective homomorphism from
an n-vertex graph G with vc(G) ≤ k to an m-vertex graph H with
vc(H) ≤ k can be done in 22O(k)

(nm)O(1) time.
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Proof. Let G be an n-vertex graph with a vertex cover
S = {u1, . . . , us} of size s ≤ k. Then I = VG \ S is an independent
set. For every subset X ⊆ S, we define N(X) as the set of vertices in
I that all have neighborhood X, i.e., N(X) = {u ∈ I | N(u) = X}.
Note that N(∅) is the set of isolated vertices in I.

Let X1, . . . , Xr ⊆ S be the sets with N(Xi) 6= ∅. We let p = s+r
and define sets U1, . . . , Up where Ui = {ui} for i = 1, . . . , s and
Ui = N(Xi−s) for i = s + 1, . . . , p. We observe that p ≤ k + 2k

and that each Ui is an independent set. Moreover, a vertex v ∈ Ui is
adjacent to a vertex w ∈ Uj if and only if each vertex of Ui is adjacent
to each vertex of Uj . In that case, we say that Ui is adjacent to Uj .
We display G in Figure 4.

Let H be an m-vertex graph with a a vertex cover T = {v1, . . . , vt}
of size t ≤ k. Then J = VH \ T is an independent est, and for each
Y ⊆ T we define N(Y ) = {z ∈ J | N(z) = Y }. Then we define
q ≤ k + 2k sets W1, . . . ,Wq where Wj = {vj} for j = 1, . . . , t and
Wj = N(Yj−t) for j = t + 1, . . . , q. We also display H in Figure 4.
The observations that we made for the U -sets are also valid for the
W -sets.

Now we introduce integer variables xij for 1 ≤ i ≤ p and 1 ≤ j ≤
q, and observe that there is a surjective mapping (not necessarily a
homomorphism) f : VG → VH such that xij vertices of Ui are mapped
to Wj if and only if the xij-variables satisfy the system

xij ≥ 0 i ∈ {1, . . . , p}, j ∈ {1, . . . , q}∑q
j=1 xij = |Ui| i ∈ {1, . . . , p}∑p
i=1 xij ≥ |Wj | j ∈ {1, . . . , q}.

(1)
The mapping f is a homomorphism from G to H if and only if the
following holds: for each pair of variables xij , xi′j′ such that xij > 0
and xi′j′ > 0, if Ui is adjacent to Ui′ , then Wj is adjacent to Wj′ .

We are now ready to give our algorithm. We first determine the
set S and T . We then determine the U -sets and the W -sets. We
guess a set R of indices (i, j) and only allow the variables xij for
(i, j) ∈ R to get non-zero value. Hence, we set xij = 0 for (i, j) /∈ R.
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We then check whether for all pairs (i, j), (i′, j′) ∈ R, if Ui is adjacent
to Ui′ , then Wj is adjacent to Wj′ . If not, then we discard R and
guess a next one. Else we solve the system (1). If the system has an
integer solution, then the algorithm returns Yes; otherwise we try a
next guess of R. If all guesses fail, then the algorithm returns No.

The correctness of the above algorithm follows from the afore-
mentioned observations. We now estimate the running time. We
can find S and T in time 1.2738knO(1) and 1.2738kmO(1), respec-
tively [3]. Then the sets U1, . . . , Up and W1, . . . ,Wq can be con-
structed in time 1.2738k(nm)O(1). The number of variables xij is
pq ≤ (k + 2k)2 = 2O(k). This means that there are at most 22O(k)

possibilities to choose R. By Theorem 1, system (1) (with some vari-
ables xij set to be zero) can be solved in time 22O(k)

(nm)O(1). Hence,
the total running time is 22O(k)

(nm)O(1). This completes the proof
of Theorem 3.

5 Conclusions

Our complexity study shows that the Surjective Homomorphism
problem is already NP-complete on a number of very elementary
graph classes such as linear forests, trees of small pathwidth, unions
of complete graphs, cographs, split graphs and proper interval graphs.
We conclude that there is not much hope for finding tractable results
in this direction, and consider the computational complexity classi-
fication of the Surjective (−, H)-Homomorphism problem as the
main open problem; note that Surjective (G,−)-Homomorphism
is trivially polynomial-time solvable for any guest graph G.

As we observed in Section 1,
the Surjective (−, H)-Homomorphism problem is NP-complete
already for any fixed host graph H that is nonbipartite. We also
mentioned the existence of a bipartite graph H for which the problem
is NP-complete [2] and that the problem can be solved in polynomial
time whenever the host graph H is a fixed tree [13]. The paper of
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Feder et al. [6] on retractions provides a good starting point for the
next step as we explain below.

A pseudoforest is a graph in which each connected component
has at most one cycle. The Retraction problem is to test whether
a graph G retracts to a graph H. Feder et al. [6] consider this
problem for graphs that may have self-loops. Applying their result
to simple graphs yields the following. For any pseudoforest H, the
(−, H)-Retraction problem is NP-complete if H is nonbipartite or
contains a cycle on at least 6 vertices, and it is polynomial-time solv-
able otherwise. It is an interesting open problem is to show whether
(−, H)-Retraction and Surjective (−, H)-Homomorphism are
polynomially equivalent for any fixed host graph H. All the evidence
so far seems to suggest this.
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[2] M. Bodirsky, J. Kára and B. Martin, The complexity of surjec-
tive homomorphism problems – a survey, manuscript, ArXiv,
http://arxiv.org/abs/1104.5257.

[3] J. Chen, I. A. Kanj, and G. Xia, Improved Parameterized Upper
Bounds for Vertex Cover, In: The Proceedings of MFCS, LNCS
4162, pp. 238–249, 2006.

[4] B. Courcelle and S. Olariu, Upper bounds to the clique width
of graphs, Discrete Applied Mathematics 101. 77–114, 2000.

[5] R. Enciso, M. R. Fellows, J. Guo, I. A. Kanj, F. A. Rosamond,
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